(2006•嘉定區(qū)二模)設Sn=
1
2
+
1
6
+
1
12
+…+
1
n(n+1)
,且Sn•Sn+1=
3
4
,則n的值是( 。
分析:利用裂項相消求出Sn,代入Sn•Sn+1=
3
4
求解n的值.
解答:解:由Sn=
1
2
+
1
6
+
1
12
+…+
1
n(n+1)

=(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)
=1-
1
n+1
=
n
n+1

Sn+1=
n+1
n+2

再由Sn•Sn+1=
3
4
,得
n
n+1
n+1
n+2
=
n
n+2
=
3
4

解得n=6.
故選D.
點評:本題考查了數(shù)列的求和,考查了裂項相消法,是中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2006•嘉定區(qū)二模)函數(shù)f(x)=
2x-1
的反函數(shù)是f-1(x)=
log2(x2+1)(x≥0)
log2(x2+1)(x≥0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•嘉定區(qū)二模)復數(shù)z滿足(1-2i)
.
z
=4-3i
,則z=
2-i
2-i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•嘉定區(qū)二模)若實數(shù)x,y滿足
x+y≤2
y≥x
x≥0
,則z=4x+y的最大值是
5
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•嘉定區(qū)二模)若方程2x2+my2=1表示焦點在y軸上的橢圓,則m的取值范圍是
(0,2)
(0,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•嘉定區(qū)二模)已知數(shù)列{an}的通項為an=2n-1,Sn是{an}的前n項和,則
lim
n→∞
a
2
n
Sn
=
4
4

查看答案和解析>>

同步練習冊答案