已知橢圓的離心率,長軸的左右端點(diǎn)分別為,.
(1)求橢圓的方程;
(2)設(shè)動(dòng)直線與曲線有且只有一個(gè)公共點(diǎn),且與直線相交于點(diǎn).問在軸上是否存在定點(diǎn),使得以為直徑的圓恒過定點(diǎn),若存在,求出點(diǎn)坐標(biāo);若不存在,說明理由.
(1);(2)存在,
解析試題分析:(1)由已知,得,再根據(jù)離心率求,進(jìn)而求,進(jìn)而根據(jù)焦點(diǎn)位置求橢圓方程;(2)聯(lián)立直線方程和橢圓方程,得關(guān)于的一元二次方程,由題意,列方程得,同時(shí)可求出切點(diǎn)坐標(biāo),再求,設(shè)軸上存在滿足條件的點(diǎn),以為直徑的圓恒過定點(diǎn)等價(jià)于,列方程得,由題意該方程與無關(guān),故,從而求得點(diǎn)坐標(biāo),本題還可以先從特殊值入手,確定定點(diǎn)的坐標(biāo),再證明以為直徑的圓恒過定點(diǎn).
試題解析:(1)由已知 2分
,
橢圓的方程為; 4分
(2),消去,得,則,可得,設(shè)切點(diǎn),則,,故,又由,得,設(shè)在上存在定點(diǎn),使得以為直徑的圓恒過定點(diǎn),,即 10分
,
對(duì)滿足恒成立,
,
故在軸上存在定點(diǎn),使得以為直徑的圓恒過定點(diǎn). 14分
考點(diǎn):1、橢圓的標(biāo)準(zhǔn)方程;2、直線和橢圓的位置關(guān)系;3、向量垂直的充要條件.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,已知定點(diǎn)F(1,0),點(diǎn)在軸上運(yùn)動(dòng),點(diǎn)在軸上,點(diǎn)
為平面內(nèi)的動(dòng)點(diǎn),且滿足,.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)設(shè)點(diǎn)是直線:上任意一點(diǎn),過點(diǎn)作軌跡的兩條切線,,切點(diǎn)分別為,,設(shè)切線,的斜率分別為,,直線的斜率為,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓過點(diǎn),且離心率為.斜率為的直線與橢圓交于A、B兩點(diǎn),以為底邊作等腰三角形,頂點(diǎn)為.
(1)求橢圓的方程;
(2)求△的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的左右焦點(diǎn)分別為、,短軸兩個(gè)端點(diǎn)為、,且四邊形是邊長為2的正方形.
(1)求橢圓方程;
(2)若分別是橢圓長軸的左右端點(diǎn),動(dòng)點(diǎn)滿足,連接,交橢圓于點(diǎn),證明:為定值;
(3)在(2)的條件下,試問軸上是否存在異于點(diǎn)的定點(diǎn),使得以為直徑的圓恒過直線的交點(diǎn)?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓短半軸長為半徑的圓與直線相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過右焦點(diǎn)作斜率為的直線交曲線于、兩點(diǎn),且,又點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為點(diǎn),試問、、、四點(diǎn)是否共圓?若共圓,求出圓心坐標(biāo)和半徑;若不共圓,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓E:的離心率為,過左焦點(diǎn)且斜率為的直線交橢圓E于A,B兩點(diǎn),線段AB的中點(diǎn)為M,直線:交橢圓E于C,D兩點(diǎn).
(1)求橢圓E的方程;
(2)求證:點(diǎn)M在直線上;
(3)是否存在實(shí)數(shù)k,使得三角形BDM的面積是三角形ACM的3倍?若存在,求出k的值;
若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓的右焦點(diǎn)與拋物線的焦點(diǎn)重合,過且于x軸垂直的直線與橢圓交于S,T,與拋物線交于C,D兩點(diǎn),且
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)P為橢圓上一點(diǎn),若過點(diǎn)M(2,0)的直線與橢圓相交于不同兩點(diǎn)A和B,且滿足(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知命題:,命題:方程表示焦點(diǎn)在軸上的雙曲線.
(1)命題為真命題,求實(shí)數(shù)的取值范圍;
(2)若命題“”為真,命題“”為假,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓E:+y2=1(a>1)的上頂點(diǎn)為M(0,1),兩條過M的動(dòng)弦MA、MB滿足MA⊥MB.
(1)當(dāng)坐標(biāo)原點(diǎn)到橢圓E的準(zhǔn)線距離最短時(shí),求橢圓E的方程;
(2)若Rt△MAB面積的最大值為,求a;
(3)對(duì)于給定的實(shí)數(shù)a(a>1),動(dòng)直線AB是否經(jīng)過一定點(diǎn)?如果經(jīng)過,求出定點(diǎn)坐標(biāo)(用a表示);反之,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com