已知向量 
(Ⅰ)若,求向量的概率;
(Ⅱ)若用計(jì)算機(jī)產(chǎn)生的隨機(jī)二元數(shù)組構(gòu)成區(qū)域,求二元數(shù)組滿足1的概率.

(Ⅰ);(Ⅱ)。

解析試題分析:(Ⅰ)從取兩個(gè)數(shù)的基本事件有
,共9種      2分
設(shè)“向量”為事件
若向量,則      3分
∴事件包含的基本事件有,共2種      5分
∴所求事件的概率為       6分
(Ⅱ)二元數(shù)組構(gòu)成區(qū)域
設(shè)“二元數(shù)組滿足1”為事件
則事件    9分
∴所求事件的概率為       12分
考點(diǎn):本題主要考查古典概型、幾何概型概率的計(jì)算。
點(diǎn)評(píng):典型題,本題難度不大,較為典型,古典概型概率的計(jì)算,關(guān)鍵是計(jì)算事件數(shù),可采用“樹(shù)圖法”“坐標(biāo)法”,以保證不重不漏。幾何概型概率的計(jì)算,關(guān)鍵是計(jì)算“幾何度量”,往往與面積,體積,線段長(zhǎng)度等有關(guān)。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

山東省某示范性高中為了推進(jìn)新課程改革,滿足不同層次學(xué)生的需求,決定從高一年級(jí)開(kāi)始,在每周的周一、周三、周五的課外活動(dòng)期間同時(shí)開(kāi)設(shè)數(shù)學(xué)、物理、化學(xué)、生物和信息技術(shù)輔導(dǎo)講座,每位有興趣的同學(xué)可以在期間的任何一天參加任何一門(mén)科目的輔導(dǎo)講座,也可以放棄任何一門(mén)科目的輔導(dǎo)講座.(規(guī)定:各科達(dá)到預(yù)先設(shè)定的人數(shù)時(shí)稱為滿座,否則稱為不滿座)統(tǒng)計(jì)數(shù)據(jù)表明,各學(xué)科講座各天的滿座概率如下表:

 
信息技術(shù)
生物
化學(xué)
物理
數(shù)學(xué)
周一





周三





周五





。á瘢┣髷(shù)學(xué)輔導(dǎo)講座在周一、周三、周五都不滿座的概率;
。á颍┰O(shè)周三各輔導(dǎo)講座滿座的科目數(shù)為,求隨即變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某學(xué)校有甲、乙、丙三名學(xué)生報(bào)名參加2012年高校自主招生考試,三位同學(xué)通過(guò)自主招生考試考上大學(xué)的概率分別是,且每位同學(xué)能否通過(guò)考試時(shí)相互獨(dú)立的。
(Ⅰ)求恰有一位同學(xué)通過(guò)高校自主招生考試的概率;
(Ⅱ)若沒(méi)有通過(guò)自主招生考試,還可以參加2012年6月的全國(guó)統(tǒng)一考試,且每位同學(xué)通過(guò)考試的概率均為,求這三位同學(xué)中恰好有一位同學(xué)考上大學(xué)的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

生產(chǎn)A,B兩種元件,其質(zhì)量按測(cè)試指標(biāo)劃分為:指標(biāo)大于或等于為正品,小于為次品.現(xiàn)隨機(jī)抽取這兩種元件各件進(jìn)行檢測(cè),檢測(cè)結(jié)果統(tǒng)計(jì)如下:

測(cè)試指標(biāo)





元件A





元件B





(Ⅰ)試分別估計(jì)元件A,元件B為正品的概率;
(Ⅱ)生產(chǎn)一件元件A,若是正品可盈利40元,若是次品則虧損5元;生產(chǎn)一件元件B,若是正品可盈利50元,若是次品則虧損10元.在(Ⅰ)的前提下,
(。┯為生產(chǎn)1件元件A和1件元件B所得的總利潤(rùn),求隨機(jī)變量的分布列和數(shù)學(xué)期望;
(ⅱ)求生產(chǎn)5件元件B所獲得的利潤(rùn)不少于140元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)有關(guān)于x的一元二次方程x2+2axb2=0.
(1)若a是從0,1,2,3四個(gè)數(shù)中任取的一個(gè)數(shù),b是從0,1,2三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程有實(shí)根的概率;
(2) 若是從區(qū)間[0,3] 任 取 的一個(gè)數(shù),是從區(qū)間[0,2]任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

我區(qū)高三期末統(tǒng)一測(cè)試中某校的數(shù)學(xué)成績(jī)分組統(tǒng)計(jì)如下表:

分組
頻數(shù)
頻率















合計(jì)


(1)求出表中、的值,并根據(jù)表中所給數(shù)據(jù)在下面給出的坐標(biāo)系中畫(huà)出頻率分布直方圖;

(2)若我區(qū)參加本次考試的學(xué)生有600人,試估計(jì)這次測(cè)試中我區(qū)成績(jī)?cè)?img src="http://thumb.zyjl.cn/pic5/tikupic/72/5/nhieb1.png" style="vertical-align:middle;" />分以上的人數(shù);
(3)若該校教師擬從分?jǐn)?shù)不超過(guò)60的學(xué)生中選取2人進(jìn)行個(gè)案分析,求被選中2人分?jǐn)?shù)不超過(guò)30分
的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

袋子中裝有若干個(gè)均勻的紅球和白球,從中摸出一個(gè)紅球的概率是,從中摸出一個(gè)紅球的概率為
(1)從中有放回地摸球,每次摸出一個(gè),共摸4次.
①恰好有2次摸到紅球的概率;②第一次、第三次摸到紅球的概率.
(2)若、兩個(gè)袋子中的球數(shù)之比為4,將、中的球裝在一起后,從中摸出一個(gè)紅球的概率是,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

一箱里有10件產(chǎn)品,其中3件次品,現(xiàn)從中任意抽取4件產(chǎn)品檢查.
(1)求恰有1件次品的概率;
(2)求至少有1件次品的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案