必做題, 本小題10分.解答時應(yīng)寫出文字說明、證明過程或演算步驟.

如圖,在底面邊長為1,側(cè)棱長為2的正四棱柱中,P是側(cè)棱上的一點,.

(1)當時,求直線AP與平面BDD1B1所成角的度數(shù);

(2)在線段上是否存在一個定點,使得對任意的m,⊥AP,并證明你的結(jié)論.

 

【答案】

 

(1)60º

(2)Q為的中點時

【解析】(1)建立如圖所示的空間直角坐標系,則

A(1,0,0),  B(1,1,0),  P(0,1,m),C(0,1,0),  D(0,0,0),

B1(1,1,1),  D1(0,0,2).

所以

又由的一個法向量.

設(shè)所成的角為,

=,

解得.故當時,直線AP與平面所成角為60º.  ………5分

(2)若在上存在這樣的點Q,設(shè)此點的橫坐標為x,

.

依題意,對任意的m要使D1Q在平面APD1上的射影垂直于AP. 等價于

即Q為的中點時,滿足題設(shè)的要求.                 ……………10分

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

必做題,本小題10分.解答時應(yīng)寫出文字說明、證明過程或演算步驟.
已知拋物線y2=4x的焦點為F,直線l過點M(4,0).
(1)若點F到直線l的距離為
3
,求直線l的斜率;
(2)設(shè)A,B為拋物線上兩點,且AB不與x軸垂直,若線段AB的垂直平分線恰過點M,求證:線段AB中點的橫坐標為定值.(6分)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

必做題,本小題10分.解答時應(yīng)寫出文字說明、證明過程或演算步驟.
已知拋物線y2=4x的焦點為F,直線l過點M(4,0).
(1)若點F到直線l的距離為數(shù)學公式,求直線l的斜率;
(2)設(shè)A,B為拋物線上兩點,且AB不與x軸垂直,若線段AB的垂直平分線恰過點M,求證:線段AB中點的橫坐標為定值.(6分)

查看答案和解析>>

科目:高中數(shù)學 來源:2012年江蘇省高考數(shù)學全真模擬試卷(5)(解析版) 題型:解答題

必做題,本小題10分.解答時應(yīng)寫出文字說明、證明過程或演算步驟.
已知拋物線y2=4x的焦點為F,直線l過點M(4,0).
(1)若點F到直線l的距離為,求直線l的斜率;
(2)設(shè)A,B為拋物線上兩點,且AB不與x軸垂直,若線段AB的垂直平分線恰過點M,求證:線段AB中點的橫坐標為定值.(6分)

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江蘇省高考數(shù)學仿真押題試卷(11)(解析版) 題型:解答題

必做題,本小題10分.解答時應(yīng)寫出文字說明、證明過程或演算步驟.
已知拋物線y2=4x的焦點為F,直線l過點M(4,0).
(1)若點F到直線l的距離為,求直線l的斜率;
(2)設(shè)A,B為拋物線上兩點,且AB不與x軸垂直,若線段AB的垂直平分線恰過點M,求證:線段AB中點的橫坐標為定值.(6分)

查看答案和解析>>

科目:高中數(shù)學 來源:2011年浙江省寧波市海曙區(qū)效實中學高考數(shù)學模擬試卷(文科)(解析版) 題型:解答題

必做題,本小題10分.解答時應(yīng)寫出文字說明、證明過程或演算步驟.
已知拋物線y2=4x的焦點為F,直線l過點M(4,0).
(1)若點F到直線l的距離為,求直線l的斜率;
(2)設(shè)A,B為拋物線上兩點,且AB不與x軸垂直,若線段AB的垂直平分線恰過點M,求證:線段AB中點的橫坐標為定值.(6分)

查看答案和解析>>

同步練習冊答案