【題目】已知集合A={x|2≤2x≤4},B={x|0<log2x<2},則A∪B=(
A.[1,4]
B.[1,4)
C.(1,2)
D.[1,2]

【答案】B
【解析】解:由A中不等式變形得:21≤2x≤22,

解得:1≤x≤2,即A=[1,2],

由B中不等式變形得:log21=0<log2x<2=log24,

解得:1<x<4,即B=(1,4),

則A∪B=[1,4),

故選:B.

【考點(diǎn)精析】關(guān)于本題考查的集合的并集運(yùn)算和集合的交集運(yùn)算,需要了解并集的性質(zhì):(1)AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A;(2)若A∪B=B,則AB,反之也成立;交集的性質(zhì):(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,則AB,反之也成立才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知實(shí)數(shù)x,y滿(mǎn)足x2+y2﹣4x+6y+4=0,則 的最小值是(
A.2 +3
B. ﹣3
C. +3
D. ﹣3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,四棱錐P﹣ABCD的底面ABCD是邊長(zhǎng)為1的菱形,∠BCD=60°,E是CD的中點(diǎn),PA⊥底面ABCD,PA=2. (Ⅰ)證明:平面PBE⊥平面PAB;
(Ⅱ)求二面角B﹣PE﹣D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若圓C1:(x﹣1)2+(y+3)2=1與圓C2:(x﹣a)2+(y﹣b)2=1外離,過(guò)直線(xiàn)l:x﹣y﹣1=0上任意一點(diǎn)P分別做圓C1 , C2的切線(xiàn),切點(diǎn)分別為M,N,且均保持|PM|=|PN|,則a+b=(
A.﹣2
B.﹣1
C.1
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)有小學(xué)21所,中學(xué)14所,大學(xué)7所,現(xiàn)采用分層抽樣的方法從這些學(xué)校中抽取6所學(xué)校對(duì)學(xué)生進(jìn)行視力調(diào)查.
(1)求應(yīng)從小學(xué)、中學(xué)、大學(xué)中分別抽取的學(xué)校數(shù)目;
(2)若從抽取的6所學(xué)校中隨機(jī)抽取2所學(xué)校做進(jìn)一步數(shù)據(jù)分析. (。┝谐鏊锌赡艿某槿〗Y(jié)果;
(ⅱ)求抽取的2所學(xué)校均為小學(xué)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿(mǎn)足(an+1﹣1)(an﹣1)=3(an﹣an+1),a1=2,令bn=
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)求數(shù)列{bn3n}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方體ABCD﹣A1B1C1D1中,點(diǎn)O為線(xiàn)段BD的中點(diǎn),設(shè)點(diǎn)P在線(xiàn)段CC1上,直線(xiàn)OP與平面A1BD所成的角為α,則sinα的取值范圍是(
A.[ ,1]
B.[ ,1]
C.[ , ]
D.[ ,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種零件按質(zhì)量標(biāo)準(zhǔn)分為1,2,3,4,5五個(gè)等級(jí),現(xiàn)從批該零件中隨機(jī)抽取20個(gè),對(duì)其等級(jí)進(jìn)行統(tǒng)計(jì)分析,得到頻率分布表如下:

等級(jí)

1

2

3

4

5

頻率

0.05

m

0.15

0.35

n


(1)在抽取的20個(gè)零件中,等級(jí)為5的恰有2個(gè),求m,n的值;
(2)在(1)的條件下,從等級(jí)為3和5的所有零件中,任意抽取2個(gè),求抽取的2個(gè)零件等級(jí)不相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù))在處的切線(xiàn)與軸平行.

(1)討論上的單調(diào)性;

(2)設(shè) ,證明: .

查看答案和解析>>

同步練習(xí)冊(cè)答案