已知函數(shù)g(x)=ax2-2ax+1+b(a>0)在區(qū)間[2,3]上的最大值為4,最小值為1,記f(x)=g(|x|)
(Ⅰ)求實數(shù)a,b的值;
(Ⅱ)若不等式f(log2k)>f(2)成立,求實數(shù)k的取值范圍;
(Ⅲ)定義在[p,q]上的一個函數(shù)m(x),用分法T:p=x0<x1<…<xi<…<xn=q將區(qū)間[p,q]任意劃分成n個小區(qū)間,如果存在一個常數(shù)M>0,使得和式
n
i=1
|m(xi)-m(xi-1)|≤M
恒成立,則稱函數(shù)m(x)為在[p,q]上的有界變差函數(shù),試判斷函數(shù)f(x)是否為在[1,3]上的有界變差函數(shù)?若是,求M的最小值;若不是,請說明理由.(參考公式:
n
i=1
f(x)=f(x1)+f(x2)+
…+f(xn))
分析:(I)由已知中g(shù)(x)在區(qū)間[2,3]的最大值為4,最小值為1,結(jié)合函數(shù)的單調(diào)性及最值,我們易構(gòu)造出關(guān)于a,b的方程組,解得a,b的值;
(Ⅱ)由(1)參數(shù)a,b的值,代入可得函數(shù)解析式,根據(jù)二次函數(shù)的圖象和性質(zhì),可將問題轉(zhuǎn)化為距離Y軸距離遠(yuǎn)的問題,進(jìn)而構(gòu)造關(guān)于k的方程求出K值.
(III)根據(jù)有界變差函數(shù)的定義,我們先將區(qū)間[1,3]進(jìn)行劃分,進(jìn)而判斷
n
i=1
|m(xi)-m(xi-1)|≤M
是否恒成立,進(jìn)而得到結(jié)論.
解答:解:(Ⅰ)∵函數(shù)g(x)=ax2-2ax+1+b,因為a>0,
所以g(x)在區(qū)間[2,3]上是增函數(shù),
又∵函數(shù)g(x)故在區(qū)間[2,3]上的最大值為4,最小值為1,
g(2)=1
g(3)=4

解得
a=1
b=0
;…(5分)
(Ⅱ)由已知可得f(x)=g(|x|)=x2-2|x|+1為偶函數(shù),
所以不等式f(log2k)>f(2)可化為|log2k|>2,…(8分)
解得k>4或0<k<
1
4
;…(10分)
(Ⅲ)函數(shù)f(x)為[1,3]上的有界變差函數(shù).
因為函數(shù)f(x)為[1,3]上的單調(diào)遞增函數(shù),
且對任意劃分T:1=x0<x1<…<xi<…<xn=3
有f(1)=f(x0)<f(x1)<…<f(xI)<…<f(xn)=f(3)
所以
n
i=1
|f(xi)-f(xi-1)|
=f(x1)-f(x0)+f(x2)-f(x1)<…<f(xn)-f(xn-1
=f(xn)-f(x0)=f(3)-f(1)=4恒成立,
所以存在常數(shù)M,使得
n
i=1
|m(xi)-m(xi-1)|≤M
恒成立.
M的最小值為4…(14分)
點評:本題考查的知識點是函數(shù)恒成立問題,二次函數(shù)在閉區(qū)間上的最值,新定義,其中(1)的關(guān)鍵是分析出函數(shù)的單調(diào)性,(2)要用轉(zhuǎn)化思想將其轉(zhuǎn)化為絕對值比較大。3)的關(guān)鍵是真正理解新定義的含義.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)=x3-3ax2-3t2+t(t>0)
(1)求函數(shù)g(x)的單調(diào)區(qū)間;
(2)曲線y=g(x)在點M(a,g(a))和N(b,g(b))(a<b)處的切線都與y軸垂直,若方程g(x)=0在區(qū)間[a,b]上有解,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)=lnx,0<r<s<t<1則(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a+lnx
x
,且f(x)+g(x)=
(x+1)lnx
x
,
(1)若函數(shù)f(x)在區(qū)間[1,+∞)上為減函數(shù),求實數(shù)a的取值范圍;
(2)若函數(shù)g(x)在[1,e]上的最小值為
3
2
,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•淄博一模)已知函數(shù)g(x)=(2-a)lnx,h(x)=lnx+ax2(a∈R),令f(x)=g(x)+h′(x).
(Ⅰ)當(dāng)a=0時,求f(x)的極值;
(Ⅱ)當(dāng)a<-2時,求f(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)-3<a<-2時,若對?λ1,λ2∈[1,3],使得|f(λ1)-f(λ2)|<(m+ln3)a-2ln3恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•濟寧二模)已知函數(shù)g(x)=
x
lnx
,f(x)=g(x)-ax(a>0).
(I)求函數(shù)g(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在(1,+∞)上是減函數(shù),求實數(shù)a的最小值;
(Ⅲ)當(dāng)a≥
1
4
時,若?x1,x2∈[e,e2]使f(x1)≤f′(x2)+a成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案