|
(1) |
解析:∵a=(,-),b=(,)∴|a|=|b|=1 且a·b=0. 又∵x⊥y,∴x·y=0, ∴[a+(t2-k)b]·(sa+tb)=0, ∴-sa2+(t-k)tb2+(t-st2+sk)a·b=0,∴s=t3-kt,即s=f(t)=t3-kt. |
(2) |
①(t)=3t2-k. 又∵f(t)是單調(diào)函數(shù),∴若f(t)是增函數(shù)。則f'(t)≥0.恒有3t2≥k,而t∈[1,+∞],∴0<k≤3. 若f(t)是減函數(shù),則f'(t)≤0,恒有3t2≤k,而t∈[1,+∞]、這樣的k不存在,∴0<k≤3. 、诜椒ㄒ弧≡O(shè)f(x0)=m,由f[(x0)]=x0, 得f(m)=x0,∴ 兩式相減,有(-kx0)-(m3-km)=m-x0,即(-m3)-k(x0-m)=m-x0,亦即(x0-m)(+mx0+m2)-k(x0-m)=m-x0, ∴(x0-m)(+mx0+m2+1-k)=0. ∵x0≥1,m=f(x0)≥1, ∴+mx0+m2+1-k≥4-k. 而0<k≤3,∴+mx0+m2+1-k>0, ∴x0-m=0,∴x0=m,∴f(x0)=x0. 方法二 若f(x0)>x0≥1,∵f(t)在[1,+∞)上是單調(diào)增函數(shù)!鄁(f(x0))>f(x0)>x0. 與f(f(x0))=x0矛盾. 若1≤f(x0)<x0,∵f(t)在[1,+∞]上是單調(diào)增函數(shù),∴f(f(x0))<f(x0)<x0. 與f(f(x0))=x0矛盾,∴f(x0)=x0. 點(diǎn)評:本題主要考查:(1)平面向量數(shù)量積的運(yùn)算;(2)導(dǎo)數(shù)的性質(zhì);(3)恒成立的不等式字母參數(shù)取值范圍的求法;(4)關(guān)于不動(dòng)點(diǎn)的證明問題.本題是一道綜合性較強(qiáng)的試題,覆蓋了中學(xué)數(shù)學(xué)中的重要知識,體現(xiàn)了在知識網(wǎng)絡(luò)交匯點(diǎn)設(shè)計(jì)試題的高考命題思想. |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2009屆高考數(shù)學(xué)二輪專題突破訓(xùn)練(概率) 題型:013
設(shè)平面向量a=(3,5),b=(-2,1),則a-2b=
A.(7,3)
B.(7,7)
C.(1,7)
D.(1,3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:重慶八中2009屆高三下學(xué)期第二次月考數(shù)學(xué)文科試題 題型:013
設(shè)平面向量a=(3,5),b=(-2,1),則a+2b=
A.(7,-1)
B.(-1,7)
C.(7,7)
D.(1,6)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012年人教A版高中數(shù)學(xué)必修四2.3平面向量基本定理及坐標(biāo)表示(二)(解析版) 題型:選擇題
(08·四川)設(shè)平面向量a=(3,5),b=(-2,1),則a-2b=( )
A.(7,3) B.(7,7)
C.(1,7) D.(1,3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com