2.橢圓$\frac{{x}^{2}}{4}$+y2=1的焦點為F1、F2,點P在橢圓上,如果線段PF1的中點在y軸上,那么|PF1|是|PF2|的( 。
A.3倍B.4倍C.5倍D.7倍

分析 橢圓$\frac{{x}^{2}}{4}$+y2=1,a=2,b=1,|PF1|+|PF2=4.由線段PF1的中點E在y軸上,O為F1F2的中點,可得PF2∥OE.求出|PF2|=$\frac{^{2}}{a}$=$\frac{1}{2}$,可得|PF1|.

解答 解:∵橢圓$\frac{{x}^{2}}{4}$+y2=1,∴a=2,b=1,|PF1|+|PF2=4.
∵線段PF1的中點E在y軸上,O為F1F2的中點,
∴PF2∥OE.
∴|PF2|=$\frac{^{2}}{a}$=$\frac{1}{2}$,|PF1|=4-$\frac{1}{2}$=$\frac{7}{2}$.
∴|PF1|=7|PF2|,
故選:D.

點評 本題考查了橢圓的標準方程及其性質、直線與橢圓相交弦長問題、三角形中位線定理,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

12.若△ABC中,a+b=4,∠C=30°,則△ABC面積的最大值是1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知數(shù)列{an}中,a1=2,當n≥2時,an=2an-1+(n-1)•2n,設bn=$\frac{{a}_{n}}{{2}^{n}}$-1,則$\frac{1}{_{2}}$+$\frac{1}{_{3}}$+…+$\frac{1}{_{n}}$=$\frac{2n-2}{n}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.一次函數(shù)f(x)=kx+b過點(-3,2)和(2,7),
(1)求f(x)的解析式;
(2)試求不等式f(x)>3的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.解下列方程:
(1)2x=$\sqrt{2}$;       
(2)log2(3x)=log2(2x+1);        
(3)2×5x+1-3=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知拋物線C:x2=2py(p>0)的焦點為F,直線x=4與x軸的交點為P,與C的交點為Q,且$|{QF}|=\frac{5}{4}|{PQ}|$,則拋物線C的方程為( 。
A.x2=2yB.x2=4yC.x2=8yD.x2=16y

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知命題p:$\frac{a-2}{a}$>2,命題q:?x∈[1,2],x2-ax+1>0.若p∧q與?q同時為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知a→=(-2,1),b→=(k,-3),c→=(1,2),若(a→-2b→)⊥c→,則|b→|=(  )
A.10B.35C.32D.25

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知Sn為數(shù)列{an}的前n項和,a1=2,2Sn=(n+1)an,若存在唯一的正整數(shù)n使得不等式an2-tan-2t2≤0成立,則實數(shù)t的取值范圍為(-4,-2]∪[1,2).

查看答案和解析>>

同步練習冊答案