有20個零件,其中16個一等品,4個二等品,若從20個零件中任意取3個,那么至少有1個一等品的不同取法有( 。
分析:用所有的取法數(shù)
C
3
20
減去沒有一等品的取法數(shù)
C
3
4
,即得至少有1個一等品的不同取法種數(shù).
解答:解:沒有一等品的取法有
C
3
4
=4種,而所有的取法有
C
3
20
=1140種,
故至少有1個一等品的不同取法有 1140-4=1136 種,
故選B.
點評:本題主要考查排列、組合以及簡單計數(shù)原理的應(yīng)用,采用了間接解法,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

有20個零件,其中16個一等品,4個二等品,若從這20個零件中任意取3個,那么至少有1個一等品的不同取法有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有20個零件,其中16個一等品,4個二等品,若從20個零件中任取3個,那么至少有1個是一等品的概率是(    )

A.          B.          C.         D.以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有20個零件,其中16個一等品,4個二等品,若從零件中任取3個,那么至少有1個是一等品的概率是(    )

A.                                      B.

C.                                 D.1-

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年四川省南充高中高三(上)第二次月考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

有20個零件,其中16個一等品,4個二等品,若從20個零件中任意取3個,那么至少有1個一等品的不同取法有( )
A.1120種
B.1136種
C.1600種
D.2736種

查看答案和解析>>

同步練習(xí)冊答案