已知四棱錐的底面為直角梯形,,,底面,且,是的中點(diǎn).
⑴求證:直線平面;
⑵若直線與平面所成的角為,求四棱錐的體積.
⑴見解析;⑵1
解析試題分析:⑴要證直線平面,需要在平面內(nèi)找到一條與平行的直線.顯然不容易找到;故考慮利用面面平行退出線面平行, 取的中點(diǎn),構(gòu)造平面,根據(jù) ,∥可證.
⑵利用體積公式.需求出梯形的面積,根據(jù)底面,可知.
試題解析:⑴證明:取的中點(diǎn),則,故平面;
又四邊形正方形,∴∥,故∥平面;
∴平面平面,
∴平面.
⑵根據(jù)⑴可知,平面.所以根據(jù)題意有;
因?yàn)樗倪呅?img src="http://thumb.zyjl.cn/pic5/tikupic/4f/6/1qcil3.png" style="vertical-align:middle;" />為正方形,所以為等腰直角三角形.所以,
根據(jù)可知,又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/cd/c/hpwxz1.png" style="vertical-align:middle;" />底面,所以棱錐的高為.
因?yàn)樘菪?img src="http://thumb.zyjl.cn/pic5/tikupic/74/5/cihpr4.png" style="vertical-align:middle;" />的面積為,故.
考點(diǎn):利用面面平行證明線面平行;棱錐體積;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四邊形ABCD是梯形,四邊形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,,M是線段AE上的動(dòng)點(diǎn).
(1)試確定點(diǎn)M的位置,使AC∥平面MDF,并說(shuō)明理由;
(2)在(1)的條件下,求平面MDF將幾何體ADE-BCF分成的兩部分的體積之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓錐母線長(zhǎng)為6,底面圓半徑長(zhǎng)為4,點(diǎn)是母線的中點(diǎn),是底面圓的直徑,半徑與母線所成的角的大小等于.
(1)求圓錐的側(cè)面積和體積.
(2)求異面直線與所成的角;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓臺(tái)的上、下底面半徑分別是2、6,且側(cè)面面積等于兩底面面積之和。
(1)求該圓臺(tái)的母線長(zhǎng);(2)求該圓臺(tái)的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,直三棱柱ABCA′B′C′,∠BAC=90°,AB=AC=,AA′=1,點(diǎn)M,N分別為
A′B和B′C′的中點(diǎn).
(1)證明:MN∥平面A′ACC′;
(2)求三棱錐A′MNC的體積.(錐體體積公式V=Sh,其中S為底面面積,h為高)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖①所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD為∠ACB的平分線,點(diǎn)E在線段AC上,CE=4.如圖②所示,將△BCD沿CD折起,使得平面BCD⊥平面ACD,連結(jié)AB,設(shè)點(diǎn)F是AB的中點(diǎn).
圖①圖②
(1)求證:DE⊥平面BCD;
(2)若EF∥平面BDG,其中G為直線AC與平面BDG的交點(diǎn),求三棱錐B-DEG的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,四邊形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=2,點(diǎn)E、F分別在BC、AD上,EF∥AB.現(xiàn)將四邊形ABEF沿EF折起,使平面ABEF⊥平面EFDC,設(shè)AD中點(diǎn)為P.
(1)當(dāng)E為BC中點(diǎn)時(shí),求證:CP∥平面ABEF;
(2)設(shè)BE=x,問(wèn)當(dāng)x為何值時(shí),三棱錐ACDF的體積有最大值?并求出這個(gè)最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四面體ABCD中,△ABC與△DBC都是邊長(zhǎng)為4的正三角形.
(1)求證:BC⊥AD;
(2)試問(wèn)該四面體的體積是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)棱長(zhǎng)AD的大小;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在等腰梯形ABCD中,AB∥CD,AB=BC=AD=2,CD=4,E為邊DC的中點(diǎn),如圖1.將△ADE沿AE折起到△AEP位置,連PB、PC,點(diǎn)Q是棱AE的中點(diǎn),點(diǎn)M在棱PC上,如圖2.
(1)若PA∥平面MQB,求PM∶MC;
(2)若平面AEP⊥平面ABCE,點(diǎn)M是PC的中點(diǎn),求三棱錐AMQB的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com