【題目】在如圖所示的幾何體中,四邊形是菱形,是矩形,平面平面,,,,為的中點(diǎn).
(1)求證:∥平面;
(2)在線段上是否存在點(diǎn),使二面角的大小為?若存在,求出的長;若不存在,請(qǐng)說明理由.
【答案】(1)詳見解析;(2)
【解析】
利用與交于,連接.證明,通過直線與平面平行的判定定理證明平面;
對(duì)于存在性問題,可先假設(shè)存在,即假設(shè)在線段上是否存在點(diǎn),使二面角的大小為.再通過建立空間直角坐標(biāo)系,求出相關(guān)點(diǎn)的坐標(biāo),利用坐標(biāo)法進(jìn)行求解判斷.
與交于,連接.
由已知可得四邊形是平行四邊形,
所以是的中點(diǎn).
因?yàn)?/span>是的中點(diǎn),
所以.
又平面,平面,
所以平面.
由于四邊形是菱形,,是的中點(diǎn),可得.
又四邊形是矩形,面面,
面,
如圖建立空間直角坐標(biāo)系,
則,0,,,0,,,2,,,,,
,,,,,,
設(shè)平面的法向量為,,.
則, ,
令, ,,,
又平面的法向量,0,,
,,解得,
,
在線段上不存在點(diǎn),使二面角的大小為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前n項(xiàng)和為,已知為常數(shù)).
(1)求的值;
(2)求數(shù)列的通項(xiàng)公式;
(3)記集合,若中僅有3個(gè)元素,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),動(dòng)點(diǎn)到直線:的距離為,且,設(shè)動(dòng)點(diǎn)的軌跡為曲線.
(Ⅰ)求曲線的方程;
(Ⅱ)過點(diǎn)作互相垂直的兩條直線,分別交曲線于點(diǎn),和,,若四邊形面積為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知(,是虛數(shù)單位),,定義:,,給出下列命題:
①對(duì)任意,都有;
②若是復(fù)數(shù)的共軛復(fù)數(shù),則恒成立;
③,則;
④對(duì)任意,結(jié)論恒成立;
則其中真命題是( )
A.①②③④B.②③④C.②④D.①③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為坐標(biāo)原點(diǎn),橢圓:的左、右焦點(diǎn)分別為,.過焦點(diǎn)且垂直于軸的直線與橢圓相交所得的弦長為3,直線與橢圓相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)是否存在直線:與橢圓相交于兩點(diǎn),使得?若存在,求的取值范圍;若不存在,請(qǐng)說明理由!
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次體育興趣小組的聚會(huì)中,要安排6人的座位,使他們?cè)谌鐖D所示的6個(gè)椅子中就坐,且相鄰座位(如1與2,2與3)上的人要有共同的體育興趣愛好.現(xiàn)已知這6人的體育興趣愛好如下表所示,且小林坐在1號(hào)位置上,則4號(hào)位置上坐的是
小林 | 小方 | 小馬 | 小張 | 小李 | 小周 | |
體育興趣愛好 | 籃球,網(wǎng)球,羽毛球 | 足球,排球,跆拳道 | 籃球,棒球,乒乓球 | 擊劍,網(wǎng)球,足球 | 棒球,排球,羽毛球 | 跆拳道,擊劍,自行車 |
A.小方B.小張C.小周D.小馬
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2002年在北京召開的國際數(shù)學(xué)家大會(huì)的會(huì)標(biāo)是以我國古代數(shù)學(xué)家的弦圖為基礎(chǔ)設(shè)計(jì)的.弦圖是由四個(gè)全等的直角三角形與一個(gè)小正方形拼成的一個(gè)大正方形(如圖).設(shè)其中直角三角形中較小的銳角為,且,如果在弦圖內(nèi)隨機(jī)拋擲1000米黑芝麻(大小差別忽略不計(jì)),則落在小正方形內(nèi)的黑芝麻數(shù)大約為( )
A. 350B. 300C. 250D. 200
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖等腰梯形中,且平面 平面,,為線段的中點(diǎn).
(1)求證:直線平面;
(2)求證:平面 平面;
(3)若二面角的大小為,求直線與平面所成角的正切值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com