如圖,在Rt△ABC中,∠CAB=90°,|AB|=2,|AC|=
3
2
,點(diǎn)A,B關(guān)于y軸對(duì)稱.一曲線E過C點(diǎn),動(dòng)點(diǎn)P在曲線E上運(yùn)動(dòng),且保持|PA|+|PB|的值不變.
(1)求曲線E的方程;
(2)已知點(diǎn)S(0,-
3
),T(0,
3
)
,求∠SPT的最小值;
(3)若點(diǎn)F(1,
3
2
)
是曲線E上的一點(diǎn),設(shè)M,N是曲線E上不同的兩點(diǎn),直線FM和FN的傾斜角互補(bǔ),試判斷直線MN的斜率是否為定值,如果是,求出這個(gè)定值;如果不是,請(qǐng)說明理由.
(1)設(shè)P(x,y),∵|PA|+|PB|=|CA|+|CB|=
3
2
+
(
3
2
)
2
+4
=4>2=|AB|
…(1分)
∴動(dòng)點(diǎn)P的軌跡為以A,B為焦點(diǎn)的橢圓,且a=2,c=1,b=
3
…(2分)
∴動(dòng)點(diǎn)P的軌跡方程即曲線E的方程為
x2
4
+
y2
3
=1
…(3分)
(2)設(shè)P(x0,y0)是曲線E上的任意一點(diǎn),則有
x02
4
+
y02
3
=1
,∴y02=3(1-
x02
4
)

由橢圓的對(duì)稱性不妨設(shè)點(diǎn)P在y軸右側(cè),即0<x0≤2
kPS=
y0+
3
x0
,kPT=
y0-
3
x0
,由到角公式得…(4分)tan∠SPT=
kPS-kPT
1+kPSkPT
=
y0+
3
x0
-
y0-
3
x0
1+
y0+
3
x0
y0-
3
x0
=
2
3
x0
x02+y02-3
=
2
3
x0
x02-
3
4
x02
=
8
3
x0
>0

∴∠SPT為銳角…(6分)
∵0<x0≤2,∴當(dāng)x0=2時(shí),(tan∠SPT)min=4
3
…(7分)
∴∠SPT的最小值為arctan4
3
…(8分)
(3)∵M(jìn),N是曲線E上不同的兩點(diǎn),且直線FM和FN的傾斜角互補(bǔ),則直線FM,F(xiàn)N的斜率存在且不為零.
設(shè)直線FM的方程為y=k(x-1)+
3
2

y=k(x-1)+
3
2
x2
4
+
y2
3
=1
消y,整理得(4k2+3)x2-4k(2k-3)x+4k2-12k-3=0①…(10分)
設(shè)M(x1,y1),N(x2,y2),又F(1,
3
2
)
是直線FM與橢圓的交點(diǎn),∴方程①的兩根為1,x1
由根與系數(shù)的關(guān)系得x1=
4k2-12k-3
4k2+3
②…(11分)
∵直線FM和FN的傾斜角互補(bǔ),∴直線FN的斜率為-k,
以-k代替②中的k得x2=
4k2+12k-3
4k2+3
…(12分)
y1=k(x1-1)+
3
2
,y2=-k(x2-1)+
3
2
y1-y2=k(x1+x2-2)=k•(
8k2-6
4k2+3
-2)=
-12k
4k2+3

x1-x2=
-24k
4k2+3
,∴y1-y2=
1
2
(x1-x2)

∴直線MN的斜率為定值,其定值為
1
2
…(14分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C1
x2
2
+y2=1
和圓C2x2+y2=1,左頂點(diǎn)和下頂點(diǎn)分別為A,B,且F是橢圓C1的右焦點(diǎn).
(1)若點(diǎn)P是曲線C2上位于第二象限的一點(diǎn),且△APF的面積為
1
2
+
2
4
,求證:AP⊥OP;
(2)點(diǎn)M和N分別是橢圓C1和圓C2上位于y軸右側(cè)的動(dòng)點(diǎn),且直線BN的斜率是直線BM斜率的2倍,求證:直線MN恒過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知?jiǎng)訄A過定點(diǎn)D(1,0),且與直線l:x=-1相切.
(1)求動(dòng)圓圓心M的軌跡C;
(2)過定點(diǎn)D(1,0)作直線l交軌跡C于A、B兩點(diǎn),E是D點(diǎn)關(guān)于坐標(biāo)原點(diǎn)O的對(duì)稱點(diǎn),求證:∠AED=∠BED.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知直線l與橢圓C:
x2
3
+
y2
2
=1
交于P(x1,y1),Q(x2,y2)兩不同點(diǎn),且△OPQ的面積S△OPQ=
6
2
,其中O為坐標(biāo)原點(diǎn).
(Ⅰ)證明x12+x22和y12+y22均為定值;
(Ⅱ)設(shè)線段PQ的中點(diǎn)為M,求|OM|•|PQ|的最大值;
(Ⅲ)橢圓C上是否存在點(diǎn)D,E,G,使得S△ODE=S△ODG=S△OEG=
6
2
?若存在,判斷△DEG的形狀;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點(diǎn)P(x,y)滿足橢圓方程2x2+y2=1,則
y
x-1
的最大值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如果橢圓
x2
36
+
y2
9
=1
的弦被點(diǎn)(2,2)平分,那么這條弦所在的直線的方程是( 。
A.x+4y=0B.x+4y-10=0C.x+4y-6=0D.x-4y-10=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為
2
3
3
,且過點(diǎn)P(
6
,1).
(Ⅰ)求雙曲線C的方程;
(Ⅱ)若直線l:y=kx+
2
與雙曲線C恒有兩個(gè)不同的交點(diǎn)A和B,且
OA
OB
>2(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,已知圓C:(x+1)2+y2=8,定點(diǎn)A(1,0),M為圓C上一動(dòng)點(diǎn),點(diǎn)P在線段AM上,點(diǎn)N在線段CM上,且滿足
AM
=2
AP
,
NP
AM
=0
,點(diǎn)N的軌跡為曲線E.
(1)求曲線E的方程;
(2)若過定點(diǎn)F(0,2)的直線交曲線E于不同的兩點(diǎn)G、H(點(diǎn)G在點(diǎn)F、H之間),且滿足
FG
FH
,求λ
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過拋物線y2=4x的焦點(diǎn)所作直線中,被拋物線截得弦長為8的直線有(  )
A.1條B.2條C.3條D.不確定

查看答案和解析>>

同步練習(xí)冊(cè)答案