已知P在拋物線y2=4x上,那么點P到點Q(2,1)的距離與點P到拋物線焦點距離之和取得最小值時,點P的坐標為( 。
A.(
1
4
,-1)
B.(
1
4
,1)
C.(1,2)D.(1,-2)
設(shè)準線為l:x=-1,焦點為F(1,0).
如圖所示,過點P作PM⊥l,垂足為M,連接FM,則|PM|=|FP|.
故當PQx軸時,|PM|+|PQ|取得最小值|QM|=2-(-1)=3.
設(shè)點P(x,1),代入拋物線方程12=4x,解得x=
1
4
,∴P(
1
4
,1)

故選B.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:填空題

已知動點M(x,y)到定點(2,0)的距離比到直線x=-3的距離少1,則動點M的軌跡方程為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知拋物線的頂點在原點,焦點在y軸上,其上的點P(m,3)到焦點的距離為5,則拋物線方程為( 。
A.x2=8yB.x2=4yC.x2=-4yD.x2=-8y

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線C的頂點為原點,其焦點F(0,c)(c>0)到直線l:x-y-2=0的距離為
3
2
2
,設(shè)P為直線l上的點,過點P作拋物線C的兩條切線PA,PB,其中A,B為切點.
(1)求拋物線C的方程;
(2)當點P(x0,y0)為直線l上的定點時,求直線AB的方程;
(3)當點P在直線l上移動時,求|AF|•|BF|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

求滿足下列條件的曲線方程:
(1)經(jīng)過兩點P(-2
3
,1),Q(
3
,-2)
的橢圓的標準方程;
(2)與雙曲線
x2
9
-
y2
16
=1
有公共漸近線,且經(jīng)過點(-3,2
3
)的雙曲線的標準方程;
(3)焦點在直線x+3y+15=0上的拋物線的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

(2q14•薊縣一模)拋物線x2=4y的焦點坐標是( 。
A.(1,0)B.(0,1)C.(
1
16
,0
D.(0,
1
16

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線的頂點在原點,它的準線經(jīng)過雙曲線
x2
a2
-
y2
b2
=1
的左焦點,且與x軸垂直,拋物線與此雙曲線交于點(
3
2
6
)
,求拋物線和雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知以向量
v
=(1,
1
2
)
為方向向量的直線l過點(0,
5
4
)
,拋物線C:y2=2px(p>0)的頂點關(guān)于直線l的對稱點在該拋物線的準線上.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)A、B是拋物線C上兩個動點,過A作平行于x軸的直線m,直線OB與直線m交于點N,若
OA
OB
+p2=0
(O為原點,A、B異于原點),試求點N的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知拋物線C1:x2=2y的焦點為F,以F為圓心的圓C2交C1于A,B,交C1的準線于C,D,若四邊形ABCD是矩形,則圓C2的方程為( 。
A.x2+(y-
1
2
)2=3
B.x2+(y-
1
2
)2=4
C.x2+(y-1)2=12D.x2+(y-1)2=16

查看答案和解析>>

同步練習冊答案