已知向量與 共線,設函數(shù)y=f(x).
(1)求函數(shù)f(x)的周期及最大值;
(2)已知銳角△ABC中的三個內角分別為A、B、C,若有,邊BC=,,求△ABC的面積.
【答案】分析:(1)根據(jù)向量共線的條件,結合向量與 共線,可求函數(shù)f(x)的解析式,從而可求函數(shù)的周期與最大值;
(2)根據(jù),可得A=,利用正弦定理可得AC=2,求出sinC的值,即可求得△ABC的面積.
解答:解:(1)∵向量與 共線


∴函數(shù)f(x)的周期T=2π
時,函數(shù)f(x)的最大值為2;
(2)∵



∴A=
∵BC=,,

∴AC=2
∵sinC=sin(π-A-B)=sin(A+B)=sinAcosB+cosAsinB==
∴△ABC的面積S=
點評:本題考查三角函數(shù)解析式與性質,考查三角形的面積,解題的關鍵是利用向量知識,確定函數(shù)的解析式.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2011-2012學年山東省濟寧市魚臺二中高三(上)11月月考數(shù)學試卷(理科)(解析版) 題型:解答題

已知向量與 共線,設函數(shù)y=f(x).
(1)求函數(shù)f(x)的周期及最大值;
(2)已知銳角△ABC中的三個內角分別為A、B、C,若有,邊BC=,,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江西省上饒市上饒縣中學高三(上)第一次月考數(shù)學試卷(文科)(特)(解析版) 題型:解答題

已知向量與 共線,設函數(shù)y=f(x).
(1)求函數(shù)f(x)的周期及最大值;
(2)已知銳角△ABC中的三個內角分別為A、B、C,若有,邊BC=,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年浙江省金華市磐安中學高三(下)第二次統(tǒng)練數(shù)學試卷(文科)(解析版) 題型:解答題

已知向量與 共線,設函數(shù)y=f(x).
(1)求函數(shù)f(x)的周期及最大值;
(2)已知銳角△ABC中的三個內角分別為A、B、C,若有,邊BC=,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江西省高三第一次月考文科數(shù)學試卷特(解析版) 題型:解答題

已知向量  與  共線,設函數(shù) 。

(1)求函數(shù)  的周期及最大值;

(2)已知銳角 △ABC 中的三個內角分別為 A、B、C,若有 ,邊 BC=,求 △ABC 的面積.

 

查看答案和解析>>

同步練習冊答案