(本題滿分16分,第1問4分,第2問6分,第3問6分)

已知數(shù)列中,且點在直線上.

   (1)求數(shù)列的通項公式;

   (2)若函數(shù)求函數(shù)的最小值;

   (3)設(shè)表示數(shù)列的前項和。試問:是否存在關(guān)于的整式,使得

對于一切不小于2的自然數(shù)恒成立? 若存在,寫出的解析式,并加以證明;若不存在,試說明理由.

解:(1)由點P在直線上,

,且,數(shù)列{}是以1為首項,1為公差的等差數(shù)列

   ,同樣滿足,所以  (2)

            

     所以是單調(diào)遞增,故的最小值是

(3),可得,     ,

,n≥2   

故存在關(guān)于n的整式gx)=n,使得對于一切不小于2的自然數(shù)n恒成立

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(本題滿分16分,第一小題8分;第二小題8分)

已知軸正方向的單位向量,設(shè)=, =,且滿足.

求點的軌跡方程;

過點的直線交上述軌跡于兩點,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年上海市高三第三次月考試題文科數(shù)學 題型:解答題

. (本題滿分16分,第1小題滿分4分,第2小題滿分6分,第3小題滿分6分)

已知公差大于零的等差數(shù)列的前項和為,且滿足,,

(1)求數(shù)列的通項公式;

(2)若數(shù)列是等差數(shù)列,且,求非零常數(shù);

(3)若(2)中的的前項和為,求證:

 

查看答案和解析>>

科目:高中數(shù)學 來源:上海市長寧區(qū)2010屆高三第二次模擬考試數(shù)學文 題型:解答題

(本題滿分16分,第(1)小題4分,第(2)小題6分,第(2)小題6分)

在平行四邊形中,已知過點的直線與線段分別相交于點。若。

(1)求證:的關(guān)系為;

(2)設(shè),定義在上的偶函數(shù),當,且函數(shù)圖象關(guān)于直線對稱,求證:,并求時的解析式;

(3)在(2)的條件下,不等式上恒成立,求實數(shù)的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學卷(理) 題型:解答題

(本題滿分16分;第(1)小題5分,第(2)小題5分,第(3)小題6分)

設(shè)、為坐標平面上的點,直線為坐標原點)與拋物線交于點(異于).

(1)       若對任意,點在拋物線上,試問當為何值時,點在某一圓上,并求出該圓方程

(2)       若點在橢圓上,試問:點能否在某一雙曲線上,若能,求出該雙曲線方程,若不能,說明理由;

(3)       對(1)中點所在圓方程,設(shè)是圓上兩點,且滿足,試問:是否存在一個定圓,使直線恒與圓相切.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學卷(文) 題型:解答題

(本題滿分16分,第一小題8分;第二小題8分)

已知軸正方向的單位向量,設(shè)=, =,且滿足.

(1) 求點的軌跡方程;

(2)    過點的直線交上述軌跡于兩點,且,求直線的方程.

 

查看答案和解析>>

同步練習冊答案