已知點(diǎn)(4,2)是直線被橢圓所截得的線段的中點(diǎn),則的方程是( 。

A.          B.

C.      D.

 

【答案】

D

【解析】

試題分析:由題意得,斜率存在,設(shè)為 k,則直線l的方程為 y-2=k(x-4),即 kx-y+2-4k=0,

代入橢圓的方程化簡得  (1+4k2)x2+(16k-32k2)x+64k2-64k-20=0,

∴x1+x2==8,解得 k=-,故直線l的方程為  x+2y-8=0,故選D。

考點(diǎn):本題主要考查直線與橢圓的位置關(guān)系。

點(diǎn)評:常見題型,聯(lián)立方程組,整理得一元二次方程,運(yùn)用韋達(dá)定理整體代入,是常規(guī)解法.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知直三棱柱ABC-A1B1C1,∠ACB=90°,E是棱CC1上動點(diǎn),F(xiàn)是AB中點(diǎn),AC=BC=2,AA1=4.
(Ⅰ)求證:CF⊥平面ABB1;
(Ⅱ)當(dāng)E是棱CC1中點(diǎn)時(shí),求證:CF∥平面AEB1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知直三棱柱ABC-A1B1C1中,AB=5,AC=4,BC=3,AA1=4,點(diǎn)D在AB上.
(1)若D是AB中點(diǎn),求證:AC1∥平面B1CD;
(2)當(dāng)
BD
AB
=
1
5
時(shí),求二面角B-CD-B1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是一個(gè)直三棱柱(以A1B1C1為底面)被一平面所截得到的幾何體,截面為ABC.已知A1B1=B1C1=2,∠A1B1C1=90°,AA1=4,BB1=2,CC1=3.
(I)設(shè)點(diǎn)O是AB的中點(diǎn),證明:OC∥平面A1B1C1;
(II)求此幾何體的體積;
(Ⅲ)點(diǎn)F為AA1上一點(diǎn),若BF⊥平面COB1,求AF的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直三棱柱ABC-A1B1C1的各棱長均為1,棱BB1所在直線上的動點(diǎn)M滿足
BM
BB1
,AM與側(cè)面BB1C1C所成的角為θ,若λ∈[
2
2
,
2
],則θ的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•渭南二模)如圖,已知直三棱柱ABC-A1B1C1中,∠ACB=90°,E是棱CC1上的動點(diǎn),F(xiàn)是AB的中點(diǎn),AC=BC=2,AA1=4.
(1)當(dāng)E是棱CC1的中點(diǎn)時(shí),求證:CF∥平面AEB1
(2)在棱CC1上是否存在點(diǎn)E,使得二面角A-EB1-B的大小是45°?若存在,求出CE的長,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案