【題目】如圖,一張紙的長、寬分別為2a,2a,A,B,C,D分別是其四條邊的中點,現(xiàn)將其沿圖中虛線折起,使得P1,P2,P3,P4四點重合為一點P,從而得到一個多面體,關(guān)于該多面體的下列命題,正確的是________(寫出所有正確命題的序號).
①該多面體是三棱錐;②平面BAD⊥平面BCD;
③平面BAC⊥平面ACD;④該多面體外接球的表面積為5πa2.
科目:高中數(shù)學 來源: 題型:
【題目】已知為坐標原點, , 是橢圓上的點,且,設(shè)動點滿足.
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)若直線與曲線交于兩點,求三角形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】園林管理處擬在公園某區(qū)域規(guī)劃建設(shè)一半徑為米圓心角為(弧度)的扇形景觀水池,其中為扇形的圓心,同時緊貼水池周邊建一圈理想的無寬度步道,要求總預(yù)算費用不超過萬元,水池造價為每平方米元,步道造價為每米元.
(1)當和分別為多少時,可使廣場面積最大,并求出最大值;
(2)若要求步道長為米,則可設(shè)計出水池最大面積是多少.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,放置的邊長為1的正方形PABC沿x軸滾動,點B恰好經(jīng)過原點.設(shè)頂點P(x,y)的軌跡方程是y=f(x),則對函數(shù)y=f(x)有下列判斷:
①若-2≤x≤2,則函數(shù)y=f(x)是偶函數(shù);
②對任意的x∈R,都有f(x+2)=f(x-2);
③函數(shù)y=f(x)在區(qū)間[2,3]上單調(diào)遞減;
④函數(shù)y=f(x)在區(qū)間[4,6]上是減函數(shù).
其中判斷正確的序號是________.(寫出所有正確結(jié)論的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,A、B、C的對邊分別為a,b,c,已知向量,n=(c,b-2a),且m·n=0.
(1)求角C的大小;
(2)若點D為邊AB上一點,且滿足, , ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,正方體ABCD-A1B1C1D1中,E、F分別是AB和AA1的中點.
求證:(1)E、C、D1、F四點共面;
(2)CE、D1F、DA三線共點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2017·合肥市質(zhì)檢)已知點F為橢圓E: (a>b>0)的左焦點,且兩焦點與短軸的一個頂點構(gòu)成一個等邊三角形,直線與橢圓E有且僅有一個交點M.
(1)求橢圓E的方程;
(2)設(shè)直線與y軸交于P,過點P的直線l與橢圓E交于不同的兩點A,B,若λ|PM|2=|PA|·|PB|,求實數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-4:坐標系與參數(shù)方程]
平面直角坐標系xOy中,射線l:y=x(x≥0),曲線C1的參數(shù)方程為 (α為參數(shù)),曲線C2的方程為x2+(y-2)2=4;以原點為極點,x軸的非負半軸為極軸建立極坐標系. 曲線C3的極坐標方程為ρ=8sin θ.
(Ⅰ)寫出射線l的極坐標方程以及曲線C1的普通方程;
(Ⅱ)已知射線l與C2交于O,M,與C3交于O,N,求|MN|的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|3x-1|-2|x|+2.
(Ⅰ)解不等式:f(x)<10;
(Ⅱ)若對任意的實數(shù)x,f(x)-|x|≤a恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com