已知:是的內(nèi)角,分別是其對(duì)邊長(zhǎng),向量,,.
(Ⅰ)求角A的大小;
(Ⅱ)若求的長(zhǎng).
(Ⅰ) . (Ⅱ)。
解析試題分析:(I)根據(jù).可得,進(jìn)一步轉(zhuǎn)化可得,
從而可求出A值.
(II)再(I)的基礎(chǔ)上可知在三角形ABC中,已知角A,B,邊a,從而可利用正弦定理求b.
(Ⅰ) =……1分
=……2分
∵……4分……6分
∵……7分.……8分
(Ⅱ)在中,, ,
……9分由正弦定理知:……10分
=.……12分
考點(diǎn):向量的數(shù)量積的坐標(biāo)表示,兩角差的正弦公式,給值求角,正弦定理.
點(diǎn)評(píng):掌握向量的數(shù)量積的坐標(biāo)表示是解決此問題的突破口,再利用兩角差的正弦公式可求得A角,然后還要知道正弦定理可解決兩類三角形問題:一是已知兩邊及一邊的對(duì)角,二是知道兩角及一邊.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù),
(Ⅰ)求函數(shù)的最小正周期,并求在區(qū)間上的最小值;
(Ⅱ)在中,分別是角的對(duì)邊,為銳角,若,,的面積為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知向量m=,n=.
(1)若m·n=1,求cos的值;
(2)記f(x)=m·n,在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且滿足(2a-c)cos B=bcos C,求函數(shù)f(A)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分分)已知函數(shù),
(1)求該函數(shù)的最小正周期和最小值;
(2)若,求該函數(shù)的單調(diào)遞增區(qū)間。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com