精英家教網 > 高中數學 > 題目詳情

【題目】下列函數中,既是偶函數,又在(0,+∞)單調遞增的函數是(
A.y=﹣x2
B.y=2|x|
C.y=| |
D.y=lg|x|

【答案】D
【解析】解:對于A,y=﹣x2是定義域R上的偶函數,但在(0,+∞)上單調遞減,不滿足題意;
對于B,y=2|x|是定義域R上的偶函數,但在(0,+∞)上單調遞減,不滿足題意;
對于C,y=| |是定義域(﹣∞,0)∪(0,+∞)上的偶函數,在(0,+∞)上單調遞減,不滿足題意;
對于D,y=lg|x|是定義域(﹣∞,0)∪(0,+∞)上的偶函數,且在(0,+∞)上單調遞增,滿足題意.
故選:D.
【考點精析】根據題目的已知條件,利用函數單調性的判斷方法和函數的奇偶性的相關知識可以得到問題的答案,需要掌握單調性的判定法:①設x1,x2是所研究區(qū)間內任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較;偶函數的圖象關于y軸對稱;奇函數的圖象關于原點對稱.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某四棱錐的三視圖如圖所示,該四棱錐外接球的體積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知是公差不為零的等差數列,,且,,成等比數列.

(1)求數列的通項;

(2)求數列的前項和

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知是函數圖象上的點,是雙曲線在第四象限這一分支上的動點,過點作直線,使其與雙曲線只有一個公共點,且與軸、軸分別交于點,另一條直線軸、軸分別交于點

則(1)為坐標原點,三角形的面積為__________

(2)四邊形面積的最小值為__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某次數學考試試題中共有道選擇題,每道選擇題都有個選項,其中僅有一個是正確的.評分標準規(guī)定:“每題只選項,答對得分,不答或答錯得分.”某考生每道題都給了一個答案,已確定有道題的答案是正確的,而其余題中,有兩道題都可判斷出兩個選項是錯誤的有一道題可以判斷一個選項是錯誤的,還有一道題因不理解題意只能亂猜,試求出該考生:

(Ⅰ)得分的概率;

(Ⅱ)所得分數的數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=2x , x∈(0,2)的值域為A,函數g(x)=log2(x﹣2a)+ (a<1)的定義域為B.
(1)求集合A,B;
(2)若BA,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數g(x)=f(x)+2x,x∈R為奇函數.
(1)判斷函數f(x)的奇偶性;
(2)若x>0時,f(x)=log3x,求函數g(x)的解析式.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 ,且
(1)求m的值;
(2)判斷f(x)在(0,+∞)上的單調性,并給予證明;
(3)求函數f(x)在區(qū)間[﹣5,﹣1]上的最值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的里程,如圖描述了甲、乙、丙三輛汽車在不同速度下燃油效率情況,下列敘述中正確的是(

A.消耗1升汽油,乙車最多可行駛5千米
B.以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多
C.某城市機動車最高限速80千米/小時,相同條件下,在該市用丙車比用乙車更省油
D.甲車以80千米/小時的速度行駛1小時,消耗10升汽油

查看答案和解析>>

同步練習冊答案