用綜合法或分析法證明:
(1)如果a>0,b>0,則lg
a+b
2
lga+lgb
2

(2)求證:
6
-
5
>2
2
-
7
分析:(1)利用基本不等式可得
a+b
2
ab
>0
,再由y=lgx在(0,+∞)上增函數(shù),從而有lg
a+b
2
lga+lgb
2

(2)用分析法證明不等式成立,就是尋找使不等式成立的充分條件,直到使不等式成立的充分條件顯然成立為止.
解答:(1)證明:∵a>0,b>0,∴a+b≥2
ab
. …(3分)
(當(dāng)且僅當(dāng)a=b時(shí),取“=”號(hào)) 即:
a+b
2
ab
>0
. …(4分)
又 y=lgx在(0,+∞)上增函數(shù),…(5分)
所以,lg
a+b
2
≥ lg
ab
=
lgab
2
=
lga+lgb
2
,故lg
a+b
2
lga+lgb
2
成立.…(7分)
(2)證明:要證
6
-
5
>2
2
-
7
,
只需證
6
+
7
>2
2
+
5
,…(9分)
只需證:2
42
>2
40
,只需證:42>40.…(12分)
因?yàn)?2>40顯然成立,所以 
6
-
5
>2
2
-
7
.…(14分)
點(diǎn)評(píng):本題主要考查對(duì)數(shù)函數(shù)的單調(diào)性和定義域,基本不等式的應(yīng)用,用分析法證明不等式,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)用綜合法或分析法證明:
5
-
3
6
-
4

(2)用反證法求證:
5
.
8
.
11
三個(gè)數(shù)不可能成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用綜合法或分析法證明:
(1)如果a>0,b>0,則lg
a+b
2
lga+lgb
2
(2)求證
6
+
7
>2
2
+
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

用綜合法或分析法證明:
(1)如果a>0,b>0,則lg
a+b
2
lga+lgb
2

(2)求證:
6
-
5
>2
2
-
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

用綜合法或分析法證明:
(1)如果a>0,b>0,則lg
a+b
2
lga+lgb
2
(2)求證
6
+
7
>2
2
+
5

查看答案和解析>>

同步練習(xí)冊(cè)答案