橢圓上有兩點P、Q ,O為原點,若OP、OQ斜率之積為,等于(      )
A. 4B. 64C. 20D.不確定
C

試題分析:設所以,即(1)
因為橢圓方程為,所以,,代入(1)式整理可得:,所以
點評:解決此題的關鍵是由已知條件整理出,運算量較大.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知點P(4, 4),圓C:與橢圓E:有一個公共點A(3,1),F(xiàn)1、F2分別是橢圓的左、右焦點,直線PF1與圓C相切.

(Ⅰ)求m的值與橢圓E的方程;(Ⅱ)設Q為橢圓E上的一個動點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知是長軸為的橢圓上三點,點是長軸的一個頂點,過橢圓中心,且.

(1)建立適當?shù)淖鴺讼,求橢圓方程;
(2)如果橢圓上兩點使直線軸圍成底邊在軸上的等腰三角形,是否總存在實數(shù)使?請給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過橢圓的右焦點F2作傾斜角為弦AB,則|AB︳為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
已知橢圓,其左準線為,右準線為,拋物線以坐標原點為頂點,為準線,兩點.
(1)求拋物線的標準方程;
(2)求線段的長度.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓的長軸長為10,離心率,則橢圓的方程是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的一個焦點是,且截直線所得弦長為,求該橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的中心在原點,焦點在軸上,長軸長為4,短軸長為2,則橢圓方程是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,直線與雙曲線的左右兩支分別交于、兩點,與雙曲線的右準線相交于點,為右焦點,若,又,則實數(shù)的值為
A.B.1C.2D.

查看答案和解析>>

同步練習冊答案