【題目】已知橢圓的左、右焦點(diǎn)分別是,離心率,過(guò)點(diǎn)且垂直于軸的直線被橢圓截得的線段長(zhǎng)為.
(1)求橢圓的方程;
(2)若直線過(guò)橢圓的右焦點(diǎn),且與軸不重合,交橢圓于兩點(diǎn),過(guò)點(diǎn)且與垂直的直線與圓交于兩點(diǎn),求四邊形面積的取值范圍.
【答案】(1)(2)
【解析】
試題分析:(1)過(guò)點(diǎn)且垂直于軸的直線被橢圓截得的線段長(zhǎng)為通徑即,而,解方程組得(2)由于四邊形對(duì)角線相互垂直,所以四邊形面積,其中為直線與圓的弦長(zhǎng),可根據(jù)圓中垂徑定理求解,而為直線與橢圓的弦長(zhǎng),可根據(jù)弦長(zhǎng)公式求解,先討論斜率不存在的情形,,再考慮斜率存在情形:設(shè)的方程聯(lián)立方程組,結(jié)合韋達(dá)定理可得,根據(jù)點(diǎn)到直線距離公式可得,代入得,綜上可得四邊形面積的取值范圍為.
試題解析:(1)由于,將代入橢圓方程,即,由題意知,即,又,所以橢圓的方程.
(2)當(dāng)直線與軸不垂直時(shí),設(shè)的方程,
由,得,則,
所以,過(guò)點(diǎn)且與垂直的直線,圓心到的距離是,所以.
故四邊形面積.可得當(dāng)與軸不垂直時(shí),四邊形面積的取值范圍為.當(dāng)與軸垂直時(shí),其方程為,四邊形面積為,綜上,四邊形面積的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】遼寧號(hào)航母紀(jì)念章從2012年10月5日起開(kāi)始上市.通過(guò)市場(chǎng)調(diào)查,得到該紀(jì)念章每1枚的市場(chǎng)價(jià) (單位:元)與上市時(shí)間(單位:天)的數(shù)據(jù)如下:
(1)根據(jù)上表數(shù)據(jù)結(jié)合散點(diǎn)圖,從下列函數(shù)中選取一個(gè)恰當(dāng)?shù)暮瘮?shù)描述遼寧號(hào)航母紀(jì)念章的市場(chǎng)價(jià)與上市時(shí)間的變化關(guān)系并說(shuō)明理由:①;②;③.
(2)利用你選取的函數(shù),求遼寧號(hào)航母紀(jì)念章市場(chǎng)價(jià)最低時(shí)的上市天數(shù)及最低的價(jià)格.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】與均勻隨機(jī)數(shù)特點(diǎn)不符的是( )
A. 它是[0,1]內(nèi)的任何一個(gè)實(shí)數(shù)
B. 它是一個(gè)隨機(jī)數(shù)
C. 出現(xiàn)的每一個(gè)實(shí)數(shù)都是等可能的
D. 是隨機(jī)數(shù)的平均數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用反證法證明命題“若直線AB、CD是異面直線,則直線AC、BD也是異面直線”的過(guò)程歸納為以下三個(gè)步驟:
①則A、B、C、D四點(diǎn)共面,所以AB、CD共面,這與AB、CD是異面直線矛盾;
②所以假設(shè)錯(cuò)誤,即直線AC、BD也是異面直線;
③假設(shè)直線AC、BD是共面直線.
則正確的序號(hào)順序?yàn)?/span>______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)命題p:x>0,x-lnx>0,則¬p為
A. x0>0,x0-lnx0>0 B. x0>0,x0-lnx0≤0
C. x>0,x-lnx<0 D. x>0,x-lnx≤0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)
(1)當(dāng)時(shí),求函數(shù)的定義域;
(2)是否存在實(shí)數(shù),使函數(shù)在遞減,并且最大值為1,若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2x-.
(1)若f(x)=2,求x的值;
(2)若2tf(2t)+mf(t)≥0對(duì)于t∈[1,2]恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍;
(2)是否存在整數(shù),使得關(guān)于的不等式的解集為?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某企業(yè)原有員工1000人,每人每年可為企業(yè)創(chuàng)利潤(rùn)15萬(wàn)元,為應(yīng)對(duì)國(guó)際金融危機(jī)給企業(yè)帶來(lái)的不利影響,該企業(yè)實(shí)施“優(yōu)化重組,分流增效”的策略,分流出一部分員工待崗.為維護(hù)生產(chǎn)穩(wěn)定,該企業(yè)決定待崗人數(shù)不超過(guò)原有員工的2%,并且每年給每位待崗員工發(fā)放生活補(bǔ)貼1萬(wàn)元.據(jù)評(píng)估,當(dāng)待崗員工人數(shù)不超過(guò)原有員工1.4%時(shí),留崗員工每人每年可為企業(yè)多創(chuàng)利潤(rùn)萬(wàn)元;當(dāng)待崗員工人數(shù)超過(guò)原有員工1.4%時(shí),留崗員工每人每年可為企業(yè)多創(chuàng)利潤(rùn)1.8萬(wàn)元.
(1)求企業(yè)年利潤(rùn)(萬(wàn)元)關(guān)于待崗員工人數(shù)的函數(shù)關(guān)系式;
(2)為使企業(yè)年利潤(rùn)最大,應(yīng)安排多少員工待崗?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com