在區(qū)間[0,1]上任取兩個(gè)數(shù)a,b,則關(guān)于x的方程x2+2ax+b2=0有實(shí)數(shù)根的概率為
 
分析:本題是一個(gè)等可能事件的概率,試驗(yàn)發(fā)生包含的事件是在區(qū)間[0,1]上任取兩個(gè)數(shù)a和b,寫(xiě)出事件對(duì)應(yīng)的集合,做出面積,滿足條件的事件是關(guān)于x的方程x2+2ax+b2=0有實(shí)數(shù)根,根據(jù)二次方程的判別式寫(xiě)出a,b要滿足的條件,寫(xiě)出對(duì)應(yīng)的集合,做出面積,得到概率.
解答:解:由題意知本題是一個(gè)等可能事件的概率,
∵試驗(yàn)發(fā)生包含的事件是在區(qū)間[0,1]上任取兩個(gè)數(shù)a和b,
事件對(duì)應(yīng)的集合是Ω={(a,b)|0≤a≤1,0≤b≤1}
對(duì)應(yīng)的面積是sΩ=1
滿足條件的事件是關(guān)于x的方程x2+2ax+b2=0有實(shí)數(shù)根,
即4a2-4b2≥0,
∴a≥b,
事件對(duì)應(yīng)的集合是A={(a,b)|0≤a≤1,0≤b≤1,a≥b}
對(duì)應(yīng)的圖形的面積是sA=
1
2

∴根據(jù)等可能事件的概率得到P=
1
2

故答案為:
1
2
點(diǎn)評(píng):本題考查幾何概型,古典概型和幾何概型是我們學(xué)習(xí)的兩大概型,古典概型要求能夠列舉出所有事件和發(fā)生事件的個(gè)數(shù),而不能列舉的就是幾何概型,幾何概型的概率的值是通過(guò)長(zhǎng)度、面積、和體積、的比值得到.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在區(qū)間[0,1]上任取兩實(shí)數(shù)a,b,則使a+b≥1的概率為
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在區(qū)間[0,1]上任取三個(gè)數(shù)a,b,c,若向量m=(a,b,C),則|M|≤1的概率是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在區(qū)間[0,1]上任取兩個(gè)數(shù)a,b,方程x2+ax+b2=0的兩根均為實(shí)數(shù)的概率為
0.25
0.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在區(qū)間[0,1]上任取三個(gè)數(shù)a、b、c,若點(diǎn)M在空間直角坐標(biāo)系O-xyz中的坐標(biāo)為(a,b,c),則|OM|≤1的概率是( �。�

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屻倝宕妷锔芥瘎婵炲濮甸懝楣冨煘閹寸偛绠犻梺绋匡攻椤ㄥ棝骞堥妸褉鍋撻棃娑欏暈鐎规洖寮堕幈銊ヮ渻鐠囪弓澹曢梻浣虹帛娓氭宕板☉姘变笉婵炴垶菤濡插牊绻涢崱妯哄妞ゅ繒鍠栧缁樻媴閼恒儳銆婇梺闈╃秶缁犳捇鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙绀冩い鏇嗗洤鐓橀柟杈鹃檮閸嬫劙鏌涘▎蹇fЧ闁诡喗鐟х槐鎾存媴閸濆嫷鈧矂鏌涢妸銉у煟鐎殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹