16.若y=alnx+bx2+x在x=1和x=2處有極值,則a=-$\frac{2}{3}$,b=-$\frac{1}{6}$.

分析 函數(shù)的極值點(diǎn)處的導(dǎo)數(shù)值為0,列出方程,求出a,b的值.

解答 解:f′(x)=$\frac{a}{x}$+2bx+1,
由已知得:$\left\{\begin{array}{l}{f′(1)=0}\\{f′(2)=0}\end{array}\right.$⇒$\left\{\begin{array}{l}{a+2b+1=0}\\{\frac{1}{2}a+4b+1=0}\end{array}\right.$,
∴a=-$\frac{2}{3}$,b=-$\frac{1}{6}$,
故答案為:-$\frac{2}{3}$,-$\frac{1}{6}$.

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的應(yīng)用,考查函數(shù)極值的意義,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若$tan({α+\frac{π}{4}})=-3$,則cos2α+2sin2α=( 。
A.$\frac{9}{5}$B.1C.$-\frac{3}{5}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在四棱錐P-ABCD中,AB∥CD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分別是CD和PC的中點(diǎn).
求證:(1)PA⊥底面ABCD;(2)平面BEF∥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn=2an-n,(n∈N*
(1)證明:{an+1}是等比數(shù)列;并求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=(2n+1)an+2n+1,求數(shù)列{bn}的前n項(xiàng)和為Tn;
(3)若cn=3n+(-1)n-1λ•(an+1)(λ為非零常數(shù),n∈N*),問是否存在整數(shù)λ,使得對(duì)任意n∈N*,都有cn+1>cn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列不等式一定成立的是( 。
A.lg(x2+$\frac{1}{4}$)>lgx(x>0)B.sin x+$\frac{1}{sinx}$≥2(x≠$\frac{kπ}{2}$,k∈Z)
C.x2+1≥2|x|(x∈R)D.$\frac{1}{{x}^{2}+1}$>1(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在△ABC中,A=60°,a=6$\sqrt{3}$,則$\frac{a+b+c}{sinA+sinB+sinC}$=12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知正項(xiàng)等比數(shù)列{an}的前n項(xiàng)和為Sn,已知S4-S1=7a2,a3=5,則Sn=( 。
A.$\frac{5}{2}({2}^{n}-1)$B.$\frac{5}{18}({3}^{n}-1)$C.$5•{2}^{n-1}-\frac{5}{4}$D.$5•{2}^{n-2}-\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若函數(shù)f(x)=x2+bx+c的圖象的頂點(diǎn)在第四象限,則函數(shù)f′(x)的圖象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.近年來,某地區(qū)為促進(jìn)本地區(qū)發(fā)展,通過不斷整合地區(qū)資源、優(yōu)化投資環(huán)境、提供投資政策扶持等措施,吸引外來投資,效果明顯.該地區(qū)引進(jìn)外來資金情況如表:
年份20122013201420152016
時(shí)間代號(hào)t12345
外來資金y(百億元)567810
(Ⅰ)求y關(guān)于t的回歸直線方程$\widehat{y}$=$\widehat$t+$\widehat{a}$;
(Ⅱ)根據(jù)所求回歸直線方程預(yù)測該地區(qū)2017年(t=6)引進(jìn)外來資金情況.
參考公式:回歸方程$\widehat{y}$=$\widehat$t+$\widehat{a}$中斜率和截距的最小二乘估計(jì)公式分別為:
$\widehat$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$=$\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{t}_{i}}^{2}-n{\overline{t}}^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat$t.

查看答案和解析>>

同步練習(xí)冊(cè)答案