對(duì)a,b∈R,記max{a,b}=函數(shù)f(x) =max{|x+1|,|x-2|}(x∈R)的最小值是(  )
A.0B.C.D.3
C

試題分析:由得,,解得:,故,其圖象如下,則,故選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某工廠的固定成本為3萬元,該工廠每生產(chǎn)100臺(tái)某產(chǎn)品的生產(chǎn)成本為1萬元,設(shè)生產(chǎn)該產(chǎn)品x(百臺(tái)),其總成本為g(x)萬元(總成本=固定成本+生產(chǎn)成本),并且銷售收人r(x)滿足假定該產(chǎn)品產(chǎn)銷平衡,根據(jù)上述統(tǒng)計(jì)規(guī)律求:
(1)要使工廠有盈利,產(chǎn)品數(shù)量x應(yīng)控制在什么范圍?
(2)工廠生產(chǎn)多少臺(tái)產(chǎn)品時(shí)盈利最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一次函數(shù)上的增函數(shù),,已知
(1)求;
(2)若單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),有最大值,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)是定義在(0,+∞)上的單調(diào)函數(shù),若對(duì)任意x∈(0,+∞),都有f(f(x)-)=2,則f()的值是(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=-x2+2ex+m-1,g(x)=x+ (x>0).
(1)若g(x)=m有零點(diǎn),求m的取值范圍;
(2)確定m的取值范圍,使得g(x)-f(x)=0有兩個(gè)相異實(shí)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若關(guān)于x的不等式2-x2≥|x-a|至少有一個(gè)正數(shù)解,則實(shí)數(shù)a的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

將一個(gè)長(zhǎng)寬分別是a,b(0<b<a)的鐵皮的四角切去相同的正方形,然后折成一個(gè)無蓋的長(zhǎng)方體的盒子,若這個(gè)長(zhǎng)方體的外接球的體積存在最小值,則的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,P1(x1,y1),P2(x2,y2),…,Pn(xn,yn)(0<y1y2<…<yn)是曲線Cy2=3x(y≥0)上的n個(gè)點(diǎn),點(diǎn)Ai(ai,0)(i=1,2,3,…,n)在x軸的正半軸上,且△Ai-1AiPi是正三角形(A0是坐標(biāo)原點(diǎn)).
 
(1)寫出a1,a2,a3;
(2)求出點(diǎn)An(an,0)(n∈N*)的橫坐標(biāo)an關(guān)于n的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x∈[-1,1],函數(shù)g(x)=[f(x)]2-2af(x)+3的最小值為h(a).
(1)求h(a);
(2)是否存在實(shí)數(shù)m、n同時(shí)滿足下列條件:
mn>3;
②當(dāng)h(a)的定義域?yàn)閇n,m]時(shí),值域?yàn)閇n2m2]?若存在,求出mn的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案