是任意實數(shù),則方程所表示的曲線一定不是(    )
A.直線B.雙曲線C.拋物線D.圓
C

試題分析:當(dāng)時,即時,曲線為直線,當(dāng)時,曲線為圓,當(dāng)時,曲線為雙曲線.故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知,,分別是橢圓的四個頂點,△是一個邊長為2的等邊三角形,其外接圓為圓
(1)求橢圓及圓的方程;
(2)若點是圓劣弧上一動點(點異于端點,),直線分別交線段,橢圓于點,,直線交于點
(。┣的最大值;
(ⅱ)試問:..,兩點的橫坐標(biāo)之和是否為定值?若是,求出該定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:(a>b>0),過點(0,1),且離心率為
(1)求橢圓C的方程;
(2)A,B為橢圓C的左右頂點,直線lx=2x軸交于點D,點P是橢圓C上異于A,B的動點,直線AP,BP分別交直線l于E,F(xiàn)兩點.證明:當(dāng)點P在橢圓C上運動時,恒為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,橢圓的中心為原點,長軸在軸上,離心率,又橢圓上的任一點到橢圓的兩焦點的距離之和為.

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若平行于軸的直線與橢圓相交于不同的兩點、,過、兩點作圓心為的圓,使橢圓上的其余點均在圓外.求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點A(1,0)及圓,C為圓B上任意一點,求AC垂直平分線與線段BC的交點P的軌跡方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知左焦點為F(-1,0)的橢圓過點E(1,).過點P(1,1)分別作斜率為k1,k2的橢圓的動弦AB,CD,設(shè)M,N分別為線段AB,CD的中點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若P為線段AB的中點,求k1;
(3)若k1+k2=1,求證直線MN恒過定點,并求出定點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)拋物線的焦點為,已知為拋物線上的兩個動點,且滿足,過弦的中點作拋物線準(zhǔn)線的垂線,垂足為,則的最大值為     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在原點,焦點在軸上,離心率為,右焦點到右頂點的距離為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線與橢圓交于兩點,是否存在實數(shù),使成立?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓E=1(ab>0),F1(-c,0),F2(c,0)為橢圓的兩個焦點,M為橢圓上任意一點,且|MF1|,|F1F2|,|MF2|構(gòu)成等差數(shù)列,點F2(c,0)到直線lx的距離為3.
(1)求橢圓E的方程;
(2)若存在以原點為圓心的圓,使該圓的任意一條切線與橢圓E恒有兩個交點A,B,且,求出該圓的方程.

查看答案和解析>>

同步練習(xí)冊答案