f(x)=
4-x2
-x+m有兩個零點,則m∈
 
考點:函數(shù)的零點與方程根的關(guān)系
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:f(x)=
4-x2
-x+m有兩個零點,那么方程
4-x2
-x+m=0有兩根,構(gòu)造函數(shù)y=
4-x2
和y=x-m,這兩個函數(shù)圖象有兩個交點,利用數(shù)形結(jié)合得到m的范圍.
解答: 解:由已知方程
4-x2
-x+m=0有兩根,構(gòu)造函數(shù)y=
4-x2
和y=x-m,這兩個函數(shù)圖象有兩個交點,如圖,
滿足條件的2≤-m<2
2
,所以-2
2
<m≤-2;
故答案為:-2
2
<m≤-2;
點評:本題考查了函數(shù)的零點與方程根以及函數(shù)圖象交點之間的關(guān)系,利用了數(shù)形結(jié)合的方法,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

判斷下列各組中的兩個函數(shù)圖象相同的是( 。
①y1=
(x+3)(x-5)
x+3
,y2=x-5;     
②y1=
x+1
x-1
,y2=
(x+1)(x-1)

③f(x)=x,g(x)=
x2
;       
f1(x)=(
2x
)2
,f2(x)=2x.
A、①、②B、③C、④D、無

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+c在點M(1,f(1))處的切線方程為3x-y+1=0,且在x=
2
3
處有極值.
(1)求函數(shù)y=f(x)的解析式;  
(2)求函數(shù)y=f(x)的極大值與極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)校組織同學(xué)們參加紅色七日游--還上夏令營活動,如圖,海中小島A周圍20海里內(nèi)有暗礁,夏令營的船只正向南航行,在B處測得小島A在船的南偏東30°;航行30海里后,在C處測得小島A在船的南偏東60°,如果此船不改變航向,繼續(xù)向南航行,有無觸礁危險?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
,
b
c
為單位向量,
a
,
b
的夾角為60°,則(
a
+
b
)•
c
的最大值為( 。
A、
3
B、
3
2
C、3
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于直線上的任意點P(x,y),若點Q(4x+2y,x+3y)仍在此直線上,求此直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓:
x2
a2
+
y2
b2
=1
(a>b>0)上存在點P使
PF1
PF2
<0,則離心率e∈( 。
A、(0,
2
2
B、(0,
2
2
]
C、(
2
2
,1)
D、(
2
2
,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(-2,0),B(2,0)為坐標(biāo)平面上兩個定點,動點M在x軸上的射影為N,且滿足|MN|2=4|AN|•|BN|.
(1)在平面直角坐標(biāo)系中畫出動點M的軌跡;
(2)是否存在過原點的直線l,它與(1)中軌跡有4個公共點,且相鄰公共點之間的距離都相等?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={(x,y)|x(x-1)+y(y-1)≤r},集合B={(x,y)|x2+y2≤r2},若A⊆B,則r的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊答案