設(shè)是拋物線上相異兩點(diǎn),到y(tǒng)軸的距離的積為

(1)求該拋物線的標(biāo)準(zhǔn)方程.
(2)過Q的直線與拋物線的另一交點(diǎn)為R,與軸交點(diǎn)為T,且Q為線段RT的中點(diǎn),試求弦PR長度的最小值.
(1).(2)直線PQ垂直于x軸時|PR|取最小值.

試題分析:(1)確定拋物線的標(biāo)準(zhǔn)方程,關(guān)鍵是確定的值.利用,可得,
再根據(jù)P、Q在拋物線上,得到,集合已知條件,得4p2=4,p=1.
(2)設(shè)直線PQ過點(diǎn),且方程為,應(yīng)用聯(lián)立方程組
消去x得y2 2my 2a=0,利用韋達(dá)定理,建立的方程組,確定得到,利用“弦長公式”求解.
試題解析: (1)∵ ·=0,則x1x2+y1y2=0,             1分
又P、Q在拋物線上,故y12=2px1,y22=2px2,故得
+y1y2=0, y1y2= 4p2 
            3分
又|x1x2|=4,故得4p2=4,p=1.
所以拋物線的方程為:       5分
(2)設(shè)直線PQ過點(diǎn)E(a,0)且方程為x=my+a
聯(lián)立方程組
消去x得y2 2my 2a=0
∴      ①                 7分
設(shè)直線PR與x軸交于點(diǎn)M(b,0),則可設(shè)直線PR方程為x=ny+b,并設(shè)R(x3,y3),
同理可知  ②               9分
由①、②可得 
由題意,Q為線段RT的中點(diǎn),∴ y3=2y2,∴b=2a
又由(Ⅰ)知, y1y2= 4,代入①,可得
2a= 4   ∴  a=2.故b=4.           11分

.
當(dāng)n=0,即直線PQ垂直于x軸時|PR|取最小值          14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線的焦點(diǎn)為F過點(diǎn)的直線交拋物線于A,B兩點(diǎn),直線AF,BF分別與拋物線交于點(diǎn)M,N

(1)求的值;
(2)記直線MN的斜率為,直線AB的斜率為 證明:為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)平面內(nèi),y軸右側(cè)的一動點(diǎn)P到點(diǎn)的距離比它到軸的距離大
(Ⅰ)求動點(diǎn)的軌跡的方程;
(Ⅱ)設(shè)為曲線上的一個動點(diǎn),點(diǎn),軸上,若為圓的外切三角形,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

點(diǎn)P是拋物線y2=4x上一動點(diǎn),則點(diǎn)P到點(diǎn)(0,-1)的距離與到拋物線準(zhǔn)線的距離之和的最小值是         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線y2=4x的焦點(diǎn)為F,點(diǎn)A,B在拋物線上,且,弦AB中點(diǎn)M在準(zhǔn)線l上的射影為,則的最大值為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線的準(zhǔn)線截圓所得弦長為2,則=         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知圓與拋物線的準(zhǔn)線相切,則  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過拋物線的焦點(diǎn)F的直線l與拋物線在第一象限的交點(diǎn)為A,直線l與拋物線的準(zhǔn)線的交點(diǎn)為B,點(diǎn)A在拋物線的準(zhǔn)線上的射影為C,若,,則拋物線的方程為        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的準(zhǔn)線方程為,則拋物線的標(biāo)準(zhǔn)方程為(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案