【題目】已知橢圓的方程為,長(zhǎng)軸是短軸的倍,且橢圓過(guò)點(diǎn),斜率為的直線過(guò)點(diǎn),坐標(biāo)平面上的點(diǎn)滿足到直線的距離為定值.
(1)寫出橢圓方程;
(2)若橢圓上恰好存在個(gè)這樣的點(diǎn),求的值.
【答案】(1);(2).
【解析】
(1)由長(zhǎng)軸長(zhǎng)和短軸長(zhǎng)關(guān)系、橢圓上點(diǎn)的坐標(biāo)和橢圓的關(guān)系可構(gòu)造方程組求得,進(jìn)而得到橢圓方程;
(2)將問(wèn)題轉(zhuǎn)化為與直線的距離為的兩條平行線與橢圓恰有三個(gè)交點(diǎn);假設(shè)平行直線方程為,與橢圓方程聯(lián)立確定,由和平行直線間距離公式得到關(guān)于的方程,可求得的值;代回驗(yàn)證得到恰有三個(gè)交點(diǎn)的情況,由此得到結(jié)果.
(1)由題意可知:,解得:
橢圓方程為:
(2)由題意可知,與直線的距離為的兩條平行線與橢圓恰有三個(gè)交點(diǎn)
直線的方程為 可設(shè)與直線平行的直線方程為:
聯(lián)立方程得:
…①
當(dāng)時(shí),…②
由兩平行線間的距離為,可得:…③
將②代入③得:,解得:或
⑴當(dāng)時(shí),代入②得:,代回③得:或
當(dāng),時(shí),由①知,此時(shí)兩平行線和與橢圓只有一個(gè)交點(diǎn),不符合題意
⑵當(dāng)時(shí),代入②得:,代回③得:或
當(dāng),時(shí),由①知,此時(shí)兩平行線和與橢圓有三個(gè)交點(diǎn)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),其中.
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)若函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某賽季甲、乙兩位運(yùn)動(dòng)員每場(chǎng)比賽得分的莖葉圖如圖所示.
(1)從甲、乙兩人的這5次成績(jī)中各隨機(jī)抽取一個(gè),求甲的成績(jī)比乙的成績(jī)高的概率;
(2)試用統(tǒng)計(jì)學(xué)中的平均數(shù)、方差知識(shí)對(duì)甲、乙兩位運(yùn)動(dòng)員的測(cè)試成績(jī)進(jìn)行分析.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知圓及點(diǎn),.
(1)若直線平行于,與圓相交于,兩點(diǎn),,求直線的方程;
(2)在圓上是否存在點(diǎn),使得?若存在,求點(diǎn)的個(gè)數(shù);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在下列命題中,正確命題的序號(hào)為 (寫出所有正確命題的序號(hào)).
①函數(shù)的最小值為;
②已知定義在上周期為4的函數(shù)滿足,則一定為偶函數(shù);
③定義在上的函數(shù)既是奇函數(shù)又是以2為周期的周期函數(shù),則;
④已知函數(shù),則是有極值的必要不充分條件;
⑤已知函數(shù),若,則.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直四棱柱中,底面是邊長(zhǎng)為2的正方形, 分別為線段, 的中點(diǎn).
(1)求證: ||平面;
(2)四棱柱的外接球的表面積為,求異面直線與所成的角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,函數(shù)的圖象相鄰兩條對(duì)稱軸之間的距離為.
(1)求的值及函數(shù)的圖象的對(duì)稱中心;
(2)已知分別為Δ中角的對(duì)邊,且滿足,求Δ周長(zhǎng)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種植園在芒果臨近成熟時(shí),隨機(jī)從一些芒果樹上摘下100個(gè)芒果,其質(zhì)量分別在,,,,,(單位:克)中,經(jīng)統(tǒng)計(jì),頻率分布直方圖如圖所示:
(1)估計(jì)這組數(shù)據(jù)的平均數(shù)(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表);
(2)現(xiàn)按分層抽樣從質(zhì)量為,的芒果中隨機(jī)抽取5個(gè),再?gòu)倪@5個(gè)中隨機(jī)抽取2個(gè),求這2個(gè)芒果都來(lái)自同一個(gè)質(zhì)量區(qū)間的概率;
(3)某經(jīng)銷商來(lái)收購(gòu)芒果,同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表,用樣本估計(jì)總體,該種植園中還未摘下的芒果大約還有1000個(gè),經(jīng)銷商提出以下兩種收購(gòu)方案:
方案①:所有芒果以9元/千克收購(gòu)
方案②:對(duì)質(zhì)量低于250克的芒果以2元/個(gè)收購(gòu),對(duì)質(zhì)量高于或等于250克的芒果以3元/個(gè)收購(gòu).通過(guò)計(jì)算確定種植園選擇哪種方案獲利更多.
參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】.
為了解某校高三學(xué)生質(zhì)檢數(shù)學(xué)成績(jī)分布,從該校參加質(zhì)檢的學(xué)生數(shù)學(xué)成績(jī)中抽取一個(gè)樣本,并分成5組,繪成如圖所示的頻率分布直方圖.若第一組至第五組數(shù)據(jù)的頻率之比為,最后一組數(shù)據(jù)的頻數(shù)是6.
(Ⅰ)估計(jì)該校高三學(xué)生質(zhì)檢數(shù)學(xué)成績(jī)?cè)?/span>125~140分之間的概率,并求出樣本容量;
(Ⅱ)從樣本中成績(jī)?cè)?/span>65~95分之間的學(xué)生中任選兩人,求至少有一人成績(jī)?cè)?/span>65~80分之間的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com