如圖,長方體ABCD-A1B1C1D1中,AB=AD=1,AA1=2,點(diǎn)P為DD1的中點(diǎn).
(1)求證:直線BD1平面PAC;
(2)求證:平面PAC⊥平面BDD1;
(3)求證:直線PB1⊥平面PAC.
(1)設(shè)AC和BD交于點(diǎn)O,連PO,
由P,O分別是DD1,BD的中點(diǎn),故POBD1,
所以直線BD1平面PAC.
(2)長方體ABCD-A1B1C1D1中,AB=AD=1,
底面ABCD是正方形,則AC⊥BD
又DD1⊥面ABCD,則DD1⊥AC,
所以AC⊥面BDD1,則平面PAC⊥平面BDD1
(3)PC2=2,PB12=3,B1C2=5,所以△PB1C是直角三角形.PB1⊥PC,
同理PB1⊥PA,所以直線PB1⊥平面PAC.(12分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在正四面體PABC中,D,E,F(xiàn)分別是棱AB,BC,CA的中點(diǎn).給出下面四個結(jié)論:
①BC平面PDF;②DF⊥平面PAE;③平面PDF⊥平面ABC;④平面PAE⊥平面ABC,
其中所有不正確的結(jié)論的序號是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在棱長為2的正方體ABCD-A1B1C1D1中,E、F分別為DD1、DB的中點(diǎn).
(1)求證:EF平面ABC1D1;
(2)求證:EF⊥B1C;
(3)求三棱錐VB1-EFC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(文科做)已知平面α面β,AB、CD為異面線段,AB?α,CD?β,且AB=a,CD=b,AB與CD所成的角為θ,平面γ面α,且平面γ與AC、BC、BD、AD分別相交于點(diǎn)M、N、P、Q.
(1)若a=b,求截面四邊形MNPQ的周長;
(2)求截面四邊形MNPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

α、β是兩個不重合的平面,在下列條件下,可判定αβ的是( 。
A.α、β都平行于直線l、m
B.α內(nèi)有三個不共線的點(diǎn)到β的距離相等
C.l、m是α內(nèi)的兩條直線且lβ,mβ
D.l、m是兩條異面直線且lα,mα,lβ,mβ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

直三棱柱ABC-A1B1C1的底面中,AB⊥AC,AB=AC=a,D為CC1的中點(diǎn),
CC1
AC

(1)λ為何值時(shí),A1D⊥平面ABD;
(2)當(dāng)A1D⊥平面ABD時(shí),求C1到平面ABD的距離;
(3)當(dāng)二面角A-BD-C為60°時(shí),求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知矩形ABCD中AB=3,BC=a,若PA⊥平面AC,在BC邊上取點(diǎn)E,使PE⊥DE,則滿足條件的E點(diǎn)有兩個時(shí),a的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,三棱柱ABC-A1B1C1中,∠CAA1=60°,AA1=2AC,BC⊥平面AA1C1C.
(1)證明:A1C⊥AB;
(2)設(shè)BC=AC=2,求三棱錐C-A1BC1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點(diǎn)P為平行四邊形ABCD外一點(diǎn),且PD⊥平面ABCD,M為PC中點(diǎn).
(1)求證:AP平面MBD;
(2)若AD⊥PB,求證:BD⊥平面PAD.

查看答案和解析>>

同步練習(xí)冊答案