:已知函數(shù)

(Ⅰ)若,令函數(shù),求函數(shù)上的極大值、極小值;

(Ⅱ)若函數(shù)上恒為單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍.

 

【答案】

 (Ⅰ)函數(shù)處取得極小值;在處取得極大值;

(Ⅱ)

【解析】本試題主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。求解函數(shù)的極值問題,以及函數(shù)的單調(diào)性問題的逆向運(yùn)用。

(1)先求解定義域和導(dǎo)數(shù),然后令導(dǎo)數(shù)大于零或者小于零,得到單調(diào)區(qū)間,進(jìn)而確定極值。

(2)要是函數(shù)在給定區(qū)間單調(diào)遞增,則滿足導(dǎo)數(shù)恒大于等于零,得到參數(shù)的不等會(huì)死,分析參數(shù)求解參數(shù)的取值范圍即可。

解:(Ⅰ),所以

………………………………………2分

所以函數(shù)處取得極小值;在處取得極大值………………6分

(Ⅱ) 因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012082414365018133439/SYS201208241437247016785219_DA.files/image021.png">的對(duì)稱軸為

(1)若時(shí),要使函數(shù)上恒為單調(diào)遞增函數(shù),則有,解得:,所以;………………………8分

(2)若時(shí),要使函數(shù)上恒為單調(diào)遞增函數(shù),則有,解得:,所以;…………10分

綜上,實(shí)數(shù)的取值范圍為………………………………………12分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3+bx2-2x+c在x=-2時(shí)有極大值6,在x=1時(shí)有極小值,
(1)求a,b,c的值;
(2)求f(x)在區(qū)間[-3,3]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2
3
a•sinx•cosx•cos2x-6cos22x+3
,且f(
π
24
)=0

(Ⅰ)求函數(shù)f(x)的周期T和單調(diào)遞增區(qū)間;
(Ⅱ)若f(θ)=-3,且θ∈(-
24
,
π
24
)
,求θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=asinx+bcosx+c的圖象上有一個(gè)最低點(diǎn)(
11π
6
,-1)

(Ⅰ)如果x=0時(shí),y=-
3
2
,求a,b,c.
(Ⅱ)如果將圖象上每個(gè)點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)縮小到原來的
3
π
,然后將所得圖象向左平移一個(gè)單位得到y(tǒng)=f(x)的圖象,并且方程f(x)=3的所有正根依次成為一個(gè)公差為3的等差數(shù)列,求y=f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-4,設(shè)曲線y=f(x)在點(diǎn)(xn,f(xn))處的切線與x軸的交點(diǎn)為(xn+1,0)(n∈N*),其中x1為正實(shí)數(shù).
(Ⅰ)用xn表示xn+1;
(Ⅱ)若x1=4,記an=lg
xn+2xn-2
,證明數(shù)列{an}成等比數(shù)列,并求數(shù)列{xn}的通項(xiàng)公式;
(Ⅲ)若x1=4,bn=xn-2,Tn是數(shù)列{bn}的前n項(xiàng)和,證明Tn<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則函數(shù)f(x)的解析式為( 。
A、f(x)=2sin(
1
2
x+
π
6
)
B、f(x)=2sin(
1
2
x-
π
6
)
C、f(x)=2sin(2x-
π
6
)
D、f(x)=2sin(2x+
π
6
)

查看答案和解析>>

同步練習(xí)冊(cè)答案