如圖,已知四棱柱ABCD-A1B1C1D1的底面ABCD為直角梯形,AB∥CD,AB⊥AD,,AB=AD=A1B=2CD,側(cè)面A1ADD1為正方形.
(1)求直線A1A與底面ABCD所成角的大;
(2)求二面角C-A1B-A正切值的大小;
(3)在棱C1C上是否存在一點(diǎn)P,使得 D1P∥平面A1BC,若存在,試說明點(diǎn)P的位置;若不存在,請(qǐng)說明理由.

【答案】分析:(1)做出輔助線,根據(jù)面面垂直得到線線垂直,進(jìn)而得到線面垂直,得到∠A1AB為直線A1A與平面ABCD所成的角.求出結(jié)果
(2)做出輔助線,過O作OH⊥A1B,垂足為H,連接CH.根據(jù)OC∥DA,DA⊥平面AA1B1B,得到CO⊥平面AA1B1B.得到∠CHO為二面角C-A1B-A的平面角,在三角形求出角的正切值
(3)結(jié)論是存在.當(dāng)點(diǎn)P為棱C1C中點(diǎn)時(shí),D1P∥平面A1BC.根據(jù)線面平行的判定定理整出結(jié)論.
解答:解:(1)取AB中點(diǎn)O,連接A1O.設(shè)AB=a.∵AD⊥AA1,AD⊥AB,AA1∩AB=A,
∴AD⊥平面AA1B1B,AD?而ABCD∴平面AA1B1B⊥平面ABCD.
∵AB=AA1=A1B=a,∴A1O⊥AB,∴A1O⊥平面ABCD.
∴∠A1AB為直線A1A與平面ABCD所成的角.
∵∠A1AB=60°,∴直線A1A與平面ABCD所成角的大小為60°
(2)過O作OH⊥A1B,垂足為H,連接CH.∵OC∥DA,DA⊥平面AA1B1B,
∴CO⊥平面AA1B1B.
∵OH⊥A1B,∴CH⊥A1B.∴∠CHO為二面角C-A1B-A的平面角.
在正△A1AB中,,
在Rt△COH中,
∴二面角C-A1B-A正切值的大小為
(3)存在.當(dāng)點(diǎn)P為棱C1C中點(diǎn)時(shí),D1P∥平面A1BC.
證明如下
延長(zhǎng)D1P與DC交于Q,連接BQ,∵點(diǎn)P為棱C1C中點(diǎn),
∴PC為△D1DQ的中位線.∴QC=DC.
由條件,得四邊形ABQD為正方形.
∴BQ=AD=A1D1,且BQ∥AD∥A1D1
則四邊形A1BQD1是平行四邊形.
∴D1P∥A1B.∵D1P?平面A1BC.A1B?平面A1BC.
∴D1P∥平面A1BC.
點(diǎn)評(píng):本題主要考查了線面平行的判定,以及利用空間向量的方法求解二面角等有關(guān)知識(shí),同時(shí)考查了空間想象能力、轉(zhuǎn)化與劃歸的思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知直棱柱ABC-A1B1C1中,AB=AC=5,BC=BB1=8,M,N分別為棱BC,CC1的中點(diǎn).
(1)求證:BN⊥AB1;
(2)求四棱錐A-MB1C1C與三棱柱ABC-A1B1C1的體積比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•無錫二模)如圖,已知四棱柱ABCD-A1B1C1D1的底面ABCD為直角梯形,AB∥CD,AB⊥AD,AB=AD=A1B=2CD,側(cè)面A1ADD1為正方形.
(1)求直線A1A與底面ABCD所成角的大。
(2)求二面角C-A1B-A正切值的大;
(3)在棱C1C上是否存在一點(diǎn)P,使得 D1P∥平面A1BC,若存在,試說明點(diǎn)P的位置;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知四棱柱ABCD-A1B1C1D1的底面ABCD是矩形,AB=4,AA1=3,∠BAA1=60°,E為棱C1D1的中點(diǎn),則
AB
AE
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河南省洛陽市高三(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,已知直棱柱ABC-A1B1C1中,AB=AC=5,BC=BB1=8,M,N分別為棱BC,CC1的中點(diǎn).
(1)求證:BN⊥AB1;
(2)求四棱錐A-MB1C1C與三棱柱ABC-A1B1C1的體積比.

查看答案和解析>>

同步練習(xí)冊(cè)答案