已知鈍角α的頂點(diǎn)在原點(diǎn),始邊與x軸的正半軸重合,終邊與單位圓相交于點(diǎn)P(-
3
2
,
1
2
)

(Ⅰ) 求sin2α-tanα的值;
(Ⅱ) 若函數(shù)f(x)=sin(2x-α)cosα-cos(2x-α)sinα,試問(wèn)該函數(shù)y=f(x)的圖象可由y=sinx(x∈R)的圖象經(jīng)過(guò)怎樣的平移和伸縮變換得到.
分析:(I)結(jié)合三角函數(shù)的定義可求sinα,cosα,tanα,然后代入sin2α-tanα=2sinαcosα-tanα
(II)由(I)可求α,然后代入f(x)=sin(2x-α)cosα-cos(2x-α)sinα=sin(2x-2α)=sin(2x-
3
),結(jié)合正弦函數(shù)的圖象的變換即可求解
解答:解:(I)由三角函數(shù)的定義可得,sinα=
1
2
cosα=-
3
2
,tanα=-
3
3
…(3分)
sin2α-tanα=2sinαcosα-tanα=-
3
2
+
3
3
=-
3
6
…(6分)
(II)由(I)可得,α=
6

∴f(x)=sin(2x-α)cosα-cos(2x-α)sinα=sin(2x-2α)
=sin(2x-
3
)(8分)
∴函數(shù)y=f(x)的圖象可由y=sinx的圖象先向右平移
3
個(gè)單位,然后把函數(shù)的圖象上的縱坐標(biāo)不變,橫坐標(biāo)縮短到原來(lái)的
1
2
即可得到…(14分)
點(diǎn)評(píng):本題主要考查了三角函數(shù)的定義,三角函數(shù)的圖象的平移及周期的變化,屬于正弦函數(shù)的簡(jiǎn)單應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸的負(fù)半軸上,過(guò)其上一點(diǎn)P(x0,y0)(x0≠0)的切線方程為y-y0=2ax0(x-x0)(a為常數(shù)).
(I)求拋物線方程;
(II)斜率為k1的直線PA與拋物線的另一交點(diǎn)為A,斜率為k2的直線PB與拋物線的另一交點(diǎn)為B(A、B兩點(diǎn)不同),且滿(mǎn)足k2+λk1=0(λ≠0,λ≠-1),
BM
MA
,求證線段PM的中點(diǎn)在y軸上;
(III)在(II)的條件下,當(dāng)λ=1,k1<0時(shí),若P的坐標(biāo)為(1,-1),求∠PAB為鈍角時(shí)點(diǎn)A的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省分校高三10月學(xué)習(xí)質(zhì)量診斷理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿(mǎn)分14分)

已知鈍角的頂點(diǎn)在原點(diǎn),始邊與軸的正半軸重合,終邊與單位圓相交于點(diǎn).

(Ⅰ) 求的值;

(Ⅱ) 若函數(shù), 試問(wèn)該函數(shù)的圖象可由的圖象經(jīng)過(guò)怎樣的平移和伸縮變換得到.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省紹興一中分校高三(上)10月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知鈍角α的頂點(diǎn)在原點(diǎn),始邊與x軸的正半軸重合,終邊與單位圓相交于點(diǎn)
(Ⅰ) 求sin2α-tanα的值;
(Ⅱ) 若函數(shù)f(x)=sin(2x-α)cosα-cos(2x-α)sinα,試問(wèn)該函數(shù)y=f(x)的圖象可由y=sinx(x∈R)的圖象經(jīng)過(guò)怎樣的平移和伸縮變換得到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省紹興一中分校高三(上)10月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知鈍角α的頂點(diǎn)在原點(diǎn),始邊與x軸的正半軸重合,終邊與單位圓相交于點(diǎn)
(Ⅰ) 求sin2α-tanα的值;
(Ⅱ) 若函數(shù)f(x)=sin(2x-α)cosα-cos(2x-α)sinα,試問(wèn)該函數(shù)y=f(x)的圖象可由y=sinx(x∈R)的圖象經(jīng)過(guò)怎樣的平移和伸縮變換得到.

查看答案和解析>>

同步練習(xí)冊(cè)答案