【題目】某學(xué)校為擔(dān)任班主任的教師辦理手機(jī)語(yǔ)音月卡套餐,為了解通話時(shí)長(zhǎng),采用隨機(jī)抽樣的方法,得到該校100位班主任每人的月平均通話時(shí)長(zhǎng)(單位:分鐘)的數(shù)據(jù),其頻率分布直方圖如圖所示,將頻率視為概率.

(1)求圖中的值;

(2)估計(jì)該校擔(dān)任班主任的教師月平均通話時(shí)長(zhǎng)的中位數(shù);

(3)在這兩組中采用分層抽樣的方法抽取6人,再?gòu)倪@6人中隨機(jī)抽取2人,求抽取的2人恰在同一組的概率.

【答案】(1) (2)390分鐘. (3)

【解析】

(1)根據(jù)頻率分布直方圖中所有矩形的面積和為1,列出方程,即可求解;

(2)設(shè)該校擔(dān)任班主任的教師月平均通話時(shí)長(zhǎng)的中位數(shù)為,根據(jù)頻率分布直方圖的中位數(shù)的計(jì)算方法,即可求解.

(3)根據(jù)分層抽樣,可得在內(nèi)抽取人,分別記為,在內(nèi)抽取2人,記為,利用古典概型及其概率的計(jì)算公式,即可求解.

(1)依題意,根據(jù)頻率分布直方圖的性質(zhì),可得:

,解得.

(2)設(shè)該校擔(dān)任班主任的教師月平均通話時(shí)長(zhǎng)的中位數(shù)為.

因?yàn)榍?組的頻率之和為

前3組的頻率之和為,

所以,由,得.

所以該校擔(dān)任班主任的教師月平均通話時(shí)長(zhǎng)的中位數(shù)為390分鐘.

(3)由題意,可得在內(nèi)抽取人,分別記為

內(nèi)抽取2人,記為

則6人中抽取2人的取法有:,,,,,,,,,,共15種等可能的取法.

其中抽取的2人恰在同一組的有,,,,共7種取法,

所以從這6人中隨機(jī)抽取的2人恰在同一組的概率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是函數(shù)的極值點(diǎn).

(Ⅰ)求實(shí)數(shù)的值;

(Ⅱ)求證:函數(shù)存在唯一的極小值點(diǎn),且.

(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系中,已知橢圓的離心率為,左、右焦點(diǎn)分別是,以為圓心以3為半徑的圓與以為圓心以1為半徑的圓相交,且交點(diǎn)在橢圓.

)求橢圓的方程;

)設(shè)橢圓為橢圓上任意一點(diǎn),過(guò)點(diǎn)的直線交橢圓兩點(diǎn),射線交橢圓于點(diǎn).

i)求的值;

(ⅱ)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,.

(1)若,命題“pq”為真,求實(shí)數(shù)的取值范圍;

(2)若 的必要不充分條件,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某游戲公司對(duì)今年新開(kāi)發(fā)的一些游戲進(jìn)行評(píng)測(cè),為了了解玩家對(duì)游戲的體驗(yàn)感,研究人員隨機(jī)調(diào)查了300名玩家,對(duì)他們的游戲體驗(yàn)感進(jìn)行測(cè)評(píng),并將所得數(shù)據(jù)統(tǒng)計(jì)如圖所示,其中.

1)求這300名玩家測(cè)評(píng)分?jǐn)?shù)的平均數(shù);

2)由于該公司近年來(lái)生產(chǎn)的游戲體驗(yàn)感較差,公司計(jì)劃聘請(qǐng)3位游戲?qū)<覍?duì)游戲進(jìn)行初測(cè),如果3人中有2人或3人認(rèn)為游戲需要改進(jìn),則公司將回收該款游戲進(jìn)行改進(jìn);若3人中僅1人認(rèn)為游戲需要改進(jìn),則公司將另外聘請(qǐng)2位專家二測(cè),二測(cè)時(shí),2人中至少有1人認(rèn)為游戲需要改進(jìn)的話,公司則將對(duì)該款游戲進(jìn)行回收改進(jìn).已知該公司每款游戲被每位專家認(rèn)為需要改進(jìn)的概率為,且每款游戲之間改進(jìn)與否相互獨(dú)立.

i)對(duì)該公司的任意一款游戲進(jìn)行檢測(cè),求該款游戲需要改進(jìn)的概率;

ii)每款游戲聘請(qǐng)專家測(cè)試的費(fèi)用均為300/人,今年所有游戲的研發(fā)總費(fèi)用為50萬(wàn)元,現(xiàn)對(duì)該公司今年研發(fā)的600款游戲都進(jìn)行檢測(cè),假設(shè)公司的預(yù)算為110萬(wàn)元,判斷這600款游戲所需的最高費(fèi)用是否超過(guò)預(yù)算,并通過(guò)計(jì)算說(shuō)明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是兩條異面直線,直線都垂直,則下列說(shuō)法正確的是( )

A. 平面,則

B. 平面,則,

C. 存在平面,使得,,

D. 存在平面,使得,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】東海水晶制品廠去年的年產(chǎn)量為10萬(wàn)件,每件水晶產(chǎn)品的銷售價(jià)格為100元,固定成本為80.從今年起,工廠投入100萬(wàn)元科技成本,并計(jì)劃以后每年比上一年多投入100萬(wàn)元科技成本.預(yù)計(jì)產(chǎn)量每年遞增1萬(wàn)件,每件水晶產(chǎn)品的固定成本與科技成本的投入次數(shù)的關(guān)系是=.若水晶產(chǎn)品的銷售價(jià)格不變,次投入后的年利潤(rùn)為萬(wàn)元.①求出的表達(dá)式;問(wèn)從今年算起第幾年利潤(rùn)最高?最高利潤(rùn)為多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)設(shè),曲線在點(diǎn)處的切線在軸上的截距為,求的最小值;

(Ⅱ)若只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),,

當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間,并求出其極值;

若函數(shù)存在兩個(gè)零點(diǎn),k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案