【題目】如圖,在圓內(nèi)畫1條線段,將圓分割成兩部分;畫2條相交線段,彼此分割成4條線段,將圓分割成4部分;畫3條線段,彼此最多分割成9條線段,將圓最多分割成7部分;畫4條線段,彼此最多分割成16條線段,將圓最多分割成11部分.那么

(1)在圓內(nèi)畫5條線段,它們彼此最多分割成多少條線段?將圓最多分割成多少部分?

(2)猜想:圓內(nèi)兩兩相交的n條線段,彼此最多分割成多少條線段?

(3)猜想:在圓內(nèi)畫n條線段,兩兩相交,將圓最多分割成多少部分?

并用數(shù)學(xué)歸納法證明你所得到的猜想.

【答案】 (1)25,16(2) n2(3)見(jiàn)解析

【解析】

根據(jù)1條、2條、3條、4條的特殊情況,發(fā)現(xiàn)規(guī)律,即可得到結(jié)論,然后用數(shù)學(xué)歸納法證明即可.

(1) 畫2條相交線段,彼此分割成4條線段,將圓分割成4部分;畫3條線段,彼此最多分割成9條線段,將圓最多分割成7部分;畫4條線段,彼此最多分割成16條線段,將圓最多分割成11部分,所以畫5條線段,彼此最多分割成25條線段,將圓最多分割成16部分.

(2) 圓內(nèi)兩兩相交的n條線段,彼此最多分割成n2條線段;

(3) 1條線段把圓分成f(1)=2部分,2條線段把圓分成f(2)=2+2部分,3條線段把圓分成f(3)=2+2+3部分,4條線段把圓分成f(4)=2+2+3+4部分,可猜想n條線段把圓分成f(n)=2+2+3+4+5+6+7+8+n)=1+1+2+3+4+5+6+7+8+n)=部分,證明如下,

證明:當(dāng)n1時(shí) 上式顯然成立

假設(shè)當(dāng)nkk2)時(shí)成立,即f(k)=成立

則當(dāng)nk+1時(shí),第k+1條直線與前k條直線相交有k個(gè)交點(diǎn),

所以k個(gè)交點(diǎn)將第k+1條線段分成k+1份,每一份將原來(lái)的部分又分成2份,

所以在原來(lái)的基礎(chǔ)上增加了k+1部分,

所以fk+1)=fk+k+1+k+1

所以當(dāng)nk+1時(shí)成立,綜合①②,所以猜想成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù),),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)寫出曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)已知點(diǎn)是曲線上一點(diǎn),若點(diǎn)到曲線的最小距離為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】十九大指出中國(guó)的電動(dòng)汽車革命早已展開(kāi),通過(guò)以新能源汽車替代汽/柴油車,中國(guó)正在大力實(shí)施一項(xiàng)將重塑全球汽車行業(yè)的計(jì)劃.2018年某企業(yè)計(jì)劃引進(jìn)新能源汽車生產(chǎn)設(shè)備,通過(guò)市場(chǎng)分析,全年需投入固定成本2500萬(wàn)元,每生產(chǎn)x(百輛),需另投入成本萬(wàn)元,且.由市場(chǎng)調(diào)研知,每輛車售價(jià)5萬(wàn)元,且全年內(nèi)生產(chǎn)的車輛當(dāng)年能全部銷售完.

1)求出2018年的利潤(rùn)Lx)(萬(wàn)元)關(guān)于年產(chǎn)量x(百輛)的函數(shù)關(guān)系式;(利潤(rùn)=銷售額-成本)

22018年產(chǎn)量為多少百輛時(shí),企業(yè)所獲利潤(rùn)最大?并求出最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列項(xiàng)和為,且.

(1)證明數(shù)列是等比數(shù)列;

(2)設(shè),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足: , .

(1)設(shè),求數(shù)列的通項(xiàng)公式;

(2)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,是正三角形,線段都垂直于平面,設(shè),,且的中點(diǎn).

(1)求證:平面;

(2)求證:

(3)求平面與平面所成的較小二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

,確定函數(shù)的單調(diào)區(qū)間.

,且對(duì)于任意, 恒成立,求實(shí)數(shù)的取值范圍.

)求證:不等式對(duì)任意正整數(shù)恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)的部分圖象如圖所示

)寫出及圖中的值.

)設(shè),求函數(shù)在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)(實(shí)數(shù)為常數(shù))

1)當(dāng)時(shí),證明上單調(diào)遞減;

2)若,且為偶函數(shù),求實(shí)數(shù)的值;

3)小金同學(xué)在求解函數(shù)的對(duì)稱中心時(shí),發(fā)現(xiàn)函數(shù)是一個(gè)復(fù)合函數(shù),設(shè),,則,顯然有對(duì)稱中心,設(shè)為,有反函數(shù),則的對(duì)稱中心為,請(qǐng)問(wèn)小金的做法是否正確?如果正確,請(qǐng)給出證明,并直接寫出當(dāng)時(shí)的對(duì)稱中心;如果錯(cuò)誤,請(qǐng)舉出反例,并用正確的方法直接寫出當(dāng)時(shí)的對(duì)稱中心.

查看答案和解析>>

同步練習(xí)冊(cè)答案