【題目】已知函數(shù)
(1)若函數(shù)f(x)在點(1,f(1))的切線平行于y=2x+3,求a的值.
(2)求函數(shù)f(x)的極值.

【答案】
(1)解:由 ,得 ,

由函數(shù)f(x)在(1,f(1))處的切線平行于y=2x+3,

得f'(1)=2,解得 a=﹣e


(2)解:f′(x)=1﹣ ,

當a≤0時,f′(x)>0,f(x)在R上為增函數(shù),f(x)無極值,

當a>0時,令f′(x)=0,得 ex=a,x=lna,

∴x∈(﹣∞,lna)時,f′(x)>0,x∈(lna,+∞),f′(x)<0,

∴f(x)在(﹣∞,lna)上單調遞減;在(lna,+∞)上單調遞增,

f(x)在x=lna取得極小值,極小值為f(lna)=lna+2,無極大值


【解析】(1)求出函數(shù)的導數(shù),得到f′(1)=1﹣ =2,求出a的值即可(2)求出函數(shù)的導數(shù),通過討論a的范圍,求出函數(shù)的單調區(qū)間,從而求出函數(shù)的極值即可.
【考點精析】認真審題,首先需要了解函數(shù)的極值與導數(shù)(求函數(shù)的極值的方法是:(1)如果在附近的左側,右側,那么是極大值(2)如果在附近的左側,右側,那么是極小值).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】直線mx+ y﹣1=0在y軸上的截距是﹣1,且它的傾斜角是直線 =0的傾斜角的2倍,則( )
A.m=﹣ ,n=﹣2
B.m= ,n=2
C.m= ,n=﹣2
D.m=﹣ ,n=2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,長方體的長、寬、高分別為5 cm,4 cm,3 cm.一只螞蟻從A點到C1點沿著表面爬行的最短路程是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知| |=4,| |=3,(2 ﹣3 )(2 + )=61.
的夾角;
②求| + |和| |.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= x2﹣tcosx.若其導函數(shù)f′(x)在R上單調遞增,則實數(shù)t的取值范圍為(
A.[﹣1,﹣ ]
B.[﹣ ]
C.[﹣1,1]
D.[﹣1, ]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC的周長為 +1,且sinA+sinB= sinC
(I)求邊AB的長;
(Ⅱ)若△ABC的面積為 sinC,求角C的度數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知隨機變量X服從正態(tài)分布N(μ,σ2),且P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣σ<X≤μ+σ)=0.6826,若μ=4,σ=1,則P(5<X<6)=(
A.0.1358
B.0.1359
C.0.2716
D.0.2718

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若關于x的不等式(ax+1)(ex﹣aex)≥0在(0,+∞)上恒成立,則實數(shù)a的取值范圍是(
A.(﹣∞,1]
B.[0,1]
C.
D.[0,e]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=ln(x+1)+a(x2﹣x),a≥0.
(1)當a=1時,求函數(shù)f(x)的極值;
(2)若x>0,f(x)≥0成立,求a的取值范圍.

查看答案和解析>>

同步練習冊答案