把實數(shù)a,b,c,d排成的形式,稱為二行二列矩陣,定義矩陣的一種運算,設(shè)運算的幾何意義為平面直角坐標(biāo)系下的點(x,y)在矩陣的作用下變換為點(ax+by,cx+dy),給出下列命題:

其中正確命題的序號為_________________(填上所有正確命題序號)
①③
所以(3,2)
所以(2)錯了
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

曲線在二階矩陣的作用下變換為曲線,
(I)求實數(shù)的值;
(II)求的逆矩陣.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

定義:.若復(fù)數(shù)滿足,則等于
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

選修4—2:矩陣與變換 (本小題滿分10分)
已知矩陣,試計算:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

,則行列式                 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分10分,選修4-2:矩陣與變換)
已知二階矩陣M屬于特征值3的一個特征向量為,并且矩陣M對應(yīng)的變換將點變成點,求出矩陣M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

本題有(1)、(2)、(3)三個選答題,每小題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.
(1)(本小題滿分7分)選修4-2:矩陣與變換
已知矩陣,向量
(I)求矩陣的特征值、和特征向量
(II)求的值.
(2)(本小題滿分7分)選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程為.以直角坐標(biāo)系原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為
(Ⅰ)求直線l的直角坐標(biāo)方程;
(Ⅱ)點P為曲線C上的動點,求點P到直線l距離的最大值.
(3)(本小題滿分7分)選修4-5:不等式選講
(Ⅰ)已知:a、b、;   
(Ⅱ)某長方體從一個頂點出發(fā)的三條棱長之和等于3,求其對角線長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

是單位矩陣,則         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

.已知 ,且,則=                

查看答案和解析>>

同步練習(xí)冊答案