【題目】如圖,在空間幾何體ABCDFE中,底面是邊長為2的正方形,,.

(1)求證:AC//平面DEF;

(2)已知,若在平面上存在點(diǎn),使得平面,試確定點(diǎn)的位置.

【答案】(1)證明見解析;(2)是線段上靠近的三等分點(diǎn).

【解析】試題分析:

(1)連BDACO,取DE中點(diǎn)K,連結(jié)OK、KF,由題意結(jié)合三角形中位線的性質(zhì)可得四邊形AOKF為平行四邊形,則,由線面平行的判斷定理可得AC//平面DEF

(2)由題意,以為原點(diǎn),、分別為、、軸建立空間直角坐標(biāo)系.由題意可得設(shè),計(jì)算可得,可得方程組,求解方程組有.是線段上靠近的三等分點(diǎn).

試題解析:

(1)連BDACO,取DE中點(diǎn)K,連結(jié)OK、KF

AC、BD是正方形的對角線

OBD中點(diǎn),∴∴四邊形AOKF為平行四邊形,∴

又∵平面DEF,平面DEF

AC//平面DEF

(2)在DAF中,,,所以

又因?yàn)?/span>,,平面ABCD

平面.

為原點(diǎn),、分別為、軸建立空間直角坐標(biāo)系(如圖).

,,,

設(shè),因?yàn)?/span>,,

所以,

解得.所以是線段上靠近的三等分點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為,分別為的右頂點(diǎn)和上頂點(diǎn),且.

(Ⅰ)求橢圓的方程;

(Ⅱ)若分別是軸負(fù)半軸,軸負(fù)半軸上的點(diǎn),且四邊形的面積為2,設(shè)直線的交點(diǎn)為,求點(diǎn)到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線lmxy=1,若直線l與直線x+mm﹣1)y=2垂直,則m的值為_____,動直線lmxy=1被圓Cx2﹣2x+y2﹣8=0截得的最短弦長為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率等于,它的一個頂點(diǎn)恰好是拋物線x2=8y的焦點(diǎn).

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)直線x=﹣2與橢圓交于P,Q兩點(diǎn),A,B是橢圓上位于直線x=﹣2兩側(cè)的動點(diǎn),若直線AB的斜率為,求四邊形APBQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=﹣alnx+(a+1)x﹣(a>0).

(1)討論函數(shù)f(x)的單調(diào)性;

(2)若f(x)≥﹣+ax+b恒成立,求a時,實(shí)數(shù)b的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究某種藥物,用小白鼠進(jìn)行試驗(yàn),發(fā)現(xiàn)藥物在血液內(nèi)的濃度與時間的關(guān)系因使用方式的不同而不同。若使用注射方式給藥,則在注射后的3小時內(nèi),藥物在白鼠血液內(nèi)的濃度與時間t滿足關(guān)系式:,若使用口服方式給藥,則藥物在白鼠血液內(nèi)的濃度與時間t滿足關(guān)系式:現(xiàn)對小白鼠同時進(jìn)行注射和口服該種藥物,且注射藥物和口服藥物的吸收與代謝互不干擾。

1)若a=1,求3小時內(nèi),該小白鼠何時血液中藥物的濃度最高,并求出最大值?

2)若使小白鼠在用藥后3小時內(nèi)血液中的藥物濃度不低于4,求正數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的右焦點(diǎn)為為圓與橢圓的一個公共點(diǎn),.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)如圖,過作直線與橢圓交于,兩點(diǎn),點(diǎn)為點(diǎn)關(guān)于軸的對稱點(diǎn).

(1)求證:;

(2)試問過,的直線是否過定點(diǎn)?若是,請求出該定點(diǎn);若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AD∥BC,ADAB,∠BCD45°∠BAD90°,將△ABD沿BD折起,使平面ABD⊥平面BCD,構(gòu)成四面體ABCD,則在四面體ABCD中,下列結(jié)論正確的是( )

A. 平面ABD⊥平面ABC B. 平面ADC⊥平面BDC

C. 平面ABC⊥平面BDC D. 平面ADC⊥平面ABC

查看答案和解析>>

同步練習(xí)冊答案