【題目】為了解某社區(qū)居民的家庭年收入與年支出的關(guān)系,隨機(jī)調(diào)查了該社區(qū)5戶(hù)家庭,得到如下統(tǒng)計(jì)數(shù)據(jù)表:

收入x(萬(wàn)元)

8.2

8.6

10.0

11.3

11.9

支出y(萬(wàn)元)

6.2

7.5

8.0

8.5

9.8

根據(jù)上表可得回歸直線(xiàn)方程 ,其中 , = ,據(jù)此估計(jì),該社區(qū)一戶(hù)居民年收入為15萬(wàn)元家庭的年支出為萬(wàn)元.

【答案】11.8
【解析】解:由題意可得 = (8.2+8.6+10.0+11.3+11.9)=10,

= (6.2+7.5+8.0+8.5+9.8)=8,

代入回歸方程可得a=8﹣0.76×10=0.4,

∴回歸方程為y=0.76x+0.4,

把x=15代入方程可得y=0.76×15+0.4=11.8,

所以答案是:11.8.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=lnx.
(1)設(shè)h(x)為偶函數(shù),當(dāng)x<0時(shí),h(x)=f(﹣x)+2x,求曲線(xiàn)y=h(x)在點(diǎn)(1,﹣2)處的切線(xiàn)方程;
(2)設(shè)g(x)=f(x)﹣mx,求函數(shù)g(x)的極值;
(3)若存在x0>1,當(dāng)x∈(1,x0)時(shí),恒有f(x)> 成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于四面體,有以下命題:

1)若,則過(guò)向底面作垂線(xiàn),垂足為底面的外心;

2)若, 則過(guò)向底面作垂線(xiàn),垂足為底面的內(nèi)心;

3)四面體的四個(gè)面中,最多有四個(gè)直角三角形;

4若四面體6條棱長(zhǎng)都為1,則它的內(nèi)切球的表面積為.

其中正確的命題是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=cos(2x),x∈R.

(1)求函數(shù)f(x)的最小正周期和單調(diào)遞減區(qū)間;

(2)求函數(shù)f(x)在區(qū)間[-, ]上的最小值和最大值,并求出取得最值時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|2x+1|+|2x﹣a|.
(1)若f(x)的最小值為2,求a的值;
(2)若f(x)≤|2x﹣4|的解集包含[﹣2,﹣1],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)[x]表示不超過(guò)x的最大整數(shù),如:[π]=3,[﹣4.3]=﹣5.給出下列命題: ①對(duì)任意實(shí)數(shù)x,都有[x]﹣x≤0;
②若x1≤x2 , 則[x1]≤[x2];
③[lg1]+[lg2]+[lg3]+…+[lg100]=90;
④若函數(shù)f(x)= ,則y=[f(x)]+[f(﹣x)]的值域?yàn)閧﹣1,0}.
其中所有真命題的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸的非負(fù)半軸重合.曲線(xiàn) (t為參數(shù)),曲線(xiàn)C2的極坐標(biāo)方程為ρ=ρcos2θ+8cosθ. (Ⅰ)將曲線(xiàn)C1 , C2分別化為普通方程、直角坐標(biāo)方程,并說(shuō)明表示什么曲線(xiàn);
(Ⅱ)設(shè)F(1,0),曲線(xiàn)C1與曲線(xiàn)C2相交于不同的兩點(diǎn)A,B,求|AF|+|BF|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸的正半軸重合,圓C的極坐標(biāo)是ρ=2asinθ,直線(xiàn)l的參數(shù)方程是 (t為參數(shù)).
(1)若a=2,M為直線(xiàn)l與x軸的交點(diǎn),N是圓C上一動(dòng)點(diǎn),求|MN|的最大值;
(2)若直線(xiàn)l被圓C截得的弦長(zhǎng)為 ,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 是平面四邊形的對(duì)角線(xiàn), , ,且.現(xiàn)在沿所在的直線(xiàn)把折起來(lái),使平面平面,如圖.

(1)求證: 平面

(2)求點(diǎn)到平面的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案