如圖,在四棱錐中,底面為矩形,側(cè)棱底面,,,, 為的中點(diǎn).
(1)求直線與所成角的余弦值;
(2)在側(cè)面內(nèi)找一點(diǎn),使面,并求出點(diǎn)到和的距離.
(1)(2).
解析試題分析:(1)建立如圖所示的空間直角坐標(biāo)系,求出,利用夾角公式即可求出直線與所成角的余弦值;
(2)由于點(diǎn)在側(cè)面內(nèi),故可設(shè)點(diǎn)坐標(biāo)為,則,由面可得關(guān)于x,z的方程組,即可求出答案.
(1)建立如圖所示的空間直角坐標(biāo)系,
則的坐標(biāo)為、
、、、
、,
從而
設(shè)的夾角為,則
∴與所成角的余弦值為.
(2)由于點(diǎn)在側(cè)面內(nèi),故可設(shè)點(diǎn)坐標(biāo)為,則
,由面可得,
∴
即點(diǎn)的坐標(biāo)為,從而點(diǎn)到和的距離分別為.
考點(diǎn):1.點(diǎn)、線、面間的距離計(jì)算;2.異面直線及其所成的角;3.直線與平面垂直的判定.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,在邊長(zhǎng)為的正方形中,點(diǎn)在線段上,且,,作//,分別交,于點(diǎn),,作//,分別交,于點(diǎn),,將該正方形沿,折疊,使得與重合,構(gòu)成如圖所示的三棱柱.
(1)求證:平面;
(2)若點(diǎn)E為四邊形BCQP內(nèi)一動(dòng)點(diǎn),且二面角E-AP-Q的余弦值為,求|BE|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知四棱錐的底面是平行四邊形,,,面,
且.若為中點(diǎn),為線段上的點(diǎn),且.
(1)求證:平面;
(2)求PC與平面PAD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐中,底面為矩形, 為等邊三角形,,點(diǎn)為中點(diǎn),平面平面.
(1)求異面直線和所成角的余弦值;
(2)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知四棱錐的底面的菱形,,點(diǎn)是邊的中點(diǎn),交于點(diǎn),
(1)求證:;
(2)若的大;
(3)在(2)的條件下,求異面直線與所成角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,幾何體中,為邊長(zhǎng)為的正方形,為直角梯形,,,,,.
(1)求異面直線和所成角的大。
(2)求幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在三棱錐SABC中,底面是邊長(zhǎng)為2的正三角形,點(diǎn)S在底面ABC上的射影O恰是AC的中點(diǎn),側(cè)棱SB和底面成45°角.
(1)若D為側(cè)棱SB上一點(diǎn),當(dāng)為何值時(shí),CD⊥AB;
(2)求二面角S-BC-A的余弦值大。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com