已知{an}為遞增等比數(shù)列,且{a1,a3,a5}{-10,-6,-2,0,1,3,4,16}.

(1)求數(shù)列{an}的通項公式.

(2)是否存在等差數(shù)列{bn},使得a1bn+a2bn-1+a3bn-2+…+anb1=2n+1-n-2對一切n∈N*都成立?若存在,求出bn;若不存在,說明理由.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}為遞增數(shù)列,前n項和為Sn,n∈N*,且S3=a5,a1與S5的等比中項為5.
(I)求數(shù)列{an}的通項公式;
(II)數(shù)列{bn}滿足bn=pn-an,且{bn}的前n項和為Tn,n∈N*,若對任意n∈N*都有Tn≤T6,求實數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設遞增等差數(shù)列{an}的前n項和為Sn,已知a3=1,a4是a3和a7的等比中項,
(I)求數(shù)列{an}的通項公式;
(II)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列敘述正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知等差數(shù)列{an}為遞增數(shù)列,前n項和為Sn,n∈N*,且S3=a5,a1與S5的等比中項為5.
(I)求數(shù)列{an}的通項公式;
(II)數(shù)列{bn}滿足bn=pn-an,且{bn}的前n項和為Tn,n∈N*,若對任意n∈N*都有Tn≤T6,求實數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年四川省自貢市高考數(shù)學三模試卷(文科)(解析版) 題型:解答題

已知等差數(shù)列{an}為遞增數(shù)列,前n項和為Sn,n∈N*,且S3=a5,a1與S5的等比中項為5.
(I)求數(shù)列{an}的通項公式;
(II)數(shù)列{bn}滿足bn=pn-an,且{bn}的前n項和為Tn,n∈N*,若對任意n∈N*都有Tn≤T6,求實數(shù)p的取值范圍.

查看答案和解析>>

同步練習冊答案