【題目】某鎮(zhèn)在政府“精準扶貧”的政策指引下,充分利用自身資源,大力發(fā)展養(yǎng)殖業(yè),以增加收入,政府計劃共投入72萬元,全部用于甲、乙兩個合作社,每個合作社至少要投入15萬元,其中甲合作社養(yǎng)魚,乙合作社養(yǎng)雞,在對市場進行調研分析發(fā)現(xiàn)養(yǎng)魚的收益、養(yǎng)雞的收益與投入(單位:萬元)滿足 .設甲合作社的投入為(單位:萬元).兩個合作社的總收益為(單位:萬元).
(1)當甲合作社的投入為25萬元時,求兩個合作社的總收益;
(2)試問如何安排甲、乙兩個合作的投入,才能使總收益最大?
【答案】(1)88.5萬元 (2)答案見解析.
【解析】
(1)結合所給的關系式求解甲合作社的投入為25萬元時,求兩個合作社的總收益即可;
(2)首先確定函數(shù)的定義域,然后結合分段函數(shù)的解析式分類討論確定最大收益的安排方法即可.
(1)當甲合作社投入為25萬元時,乙合作社投入為47萬元,
此時兩個合作社的總收益為:
(萬元).
(2)甲合作社的投入為萬元,則乙合作社的投入為萬元,
當,則,
.
令,得.
則總收益為,
顯然當時,,
即此時甲投入16萬元,乙投入56萬元時,
總收益最大,最大收益為89萬元.
當時,則.
,
顯然在上單調遞減,
∴.
即此時甲、乙總收益小于87萬元.
對.
∴該公司在甲合作社投入16萬元,在乙合作社投入56萬元,
總收益最大,最大總收益為89萬元.
科目:高中數(shù)學 來源: 題型:
【題目】已知定義域為的單調減函數(shù)是奇函數(shù),當時,.
(Ⅰ)求的值;
(Ⅱ)求的解析式;
(Ⅲ)若對任意的,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知點,.
求的值;
若的平分線交線段AB于點D,求點D的坐標;
在單位圓上是否存在點C,使得?若存在,請求出點C的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,AC⊥AD.底面ABCD為梯形,AB∥DC,AB⊥BC,PA=AB=BC=3,點E在棱PB上,且PE=2EB. (Ⅰ)求證:平面PAB⊥平面PCB;
(Ⅱ)求證:PD∥平面EAC;
(Ⅲ)求平面AEC和平面PBC所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期是π,若將其圖象向右平移 個單位后得到的圖象關于原點對稱,則函數(shù)f(x)的圖象( )
A.關于直線x= 對稱
B.關于直線x= 對稱
C.關于點( ,0)對稱
D.關于點( ,0)對稱
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某軍工企業(yè)生產(chǎn)一種精密電子儀器的固定成本為20000元,每生產(chǎn)一臺儀器需增加投入100元,已知總收益滿足函數(shù):其中x是儀器的月產(chǎn)量.
(1)將利潤表示為月產(chǎn)量的函數(shù);
(2)當月產(chǎn)量為何值時,公司所獲利潤最大?最大利潤是多少元?(總收益=總成本+利潤.)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列說法,正確的有__________.
①與共線單位向量的坐標是;
②集合與集合是相等集合;
③函數(shù)的圖象與的圖象恰有3個公共點;
④函數(shù)的圖象是由函數(shù)的圖象水平向右平移一個單位后,將所得圖象在軸右側部分沿軸翻折到軸左側替代軸左側部分圖象,并保留右側部分而得到.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com