【題目】如圖, 是正方形, 平面 , .

(1)求證: 平面

(2)求證: 平面;

(3)求四面體的體積.

【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3).

【解析】試題分析:(1)由題意可得 ,由線面垂直的判定定理可得;(2設(shè) , 中點(diǎn) ,連結(jié) ,可證 是平行四邊形,所以 ,線面平行的判定定理可得;(3)可得 平面 ,結(jié)合已知數(shù)據(jù),代入體積公式即可得答案.

試題解析:(1)證明:因?yàn)?/span>平面, 所以.

因?yàn)?/span>是正方形, 所以,

因?yàn)?/span>, 所以平面.

(2)證明:設(shè), 取中點(diǎn),連結(jié), 所以, .

因?yàn)?/span>,所以 , 從而四邊形是平行四邊形, .

因?yàn)?/span>平面 平面, 所以平面,即平面.

(3)解:因?yàn)?/span>平面, 所以 ,因?yàn)檎叫?/span>中, ,所以平面,因?yàn)?/span>,,所以的面積為,

所以四面體的體積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)如果對(duì)于任意的 恒成立,求實(shí)數(shù)的取值范圍;

(3)設(shè)函數(shù), ,過(guò)點(diǎn)作函數(shù)的圖象的所有切線,令各切點(diǎn)的橫坐標(biāo)按從小到大構(gòu)成數(shù)列,求數(shù)列的所有項(xiàng)之和的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2a4x﹣2x﹣1.
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的零點(diǎn);
(2)若f(x)有零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x3+3x2﹣9x+3.求:
(1)f(x)的單調(diào)遞增區(qū)間;
(2)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= +x在x=1處的切線方程為2x﹣y+b=0.
(1)求實(shí)數(shù)a,b的值;
(2)設(shè)函數(shù)g(x)=f(x)+ x2﹣kx,且g(x)在其定義域上存在單調(diào)遞減區(qū)間(即g′(x)<0在其定義域上有解),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x3﹣3x;
(1)求f(x)的單調(diào)區(qū)間;
(2)求f(x)在區(qū)間[﹣3,2]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=ln 的零點(diǎn)一定位于區(qū)間(
A.(1,2)
B.(2,3)
C.(3,4)
D.(4,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 =(sinx,cosx), =(sinx,sinx),函數(shù)f(x)=
(1)求f(x)的對(duì)稱軸方程;
(2)求使f(x)≥1成立的x的取值集合;
(3)若對(duì)任意實(shí)數(shù) ,不等式f(x)﹣m<2恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知(x+ n的展開(kāi)式中的第二項(xiàng)和第三項(xiàng)的系數(shù)相等.
(1)求n的值;
(2)求展開(kāi)式中所有二項(xiàng)式系數(shù)的和;
(3)求展開(kāi)式中所有的有理項(xiàng).

查看答案和解析>>

同步練習(xí)冊(cè)答案