已知等差數(shù)列中,
①求數(shù)列的通項(xiàng)公式;
②若數(shù)列項(xiàng)和,求的值。

(1)3-2n
(2)

解析試題分析:解:(1)∵
         (2分)
          (5分)
(2)            (7分)


(舍)              (10分)
考點(diǎn):等差數(shù)列
點(diǎn)評(píng):主要是考查了等差數(shù)列的通項(xiàng)公式以及求和的運(yùn)用,屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知在等差數(shù)列{}中,=3,前7項(xiàng)和=28。
(I)求數(shù)列{}的公差d;
(II)若數(shù)列{}為等比數(shù)列,且,求數(shù)列}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列{an}的前n項(xiàng)和為 Sn
(I)若a1=1,S10= 100,求{an}的通項(xiàng)公式;
(II)若Sn=n2-6n,解關(guān)于n的不等式Sn+an>2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)已知等差數(shù)列{an}的公差d > 0,且是方程x2-14x+45=0的兩根,求數(shù)列通項(xiàng)公式(2)設(shè),數(shù)列{bn}的前n項(xiàng)和為Sn,證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列{}中,=14,前10項(xiàng)和. (1)求
(2)將{}中的第2項(xiàng),第4項(xiàng),…,第項(xiàng)按原來的順序排成一個(gè)新數(shù)列{},令,求數(shù)列{}的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列的第二項(xiàng)為8,前10項(xiàng)和為185。
(1)求數(shù)列的通項(xiàng)公式;
(2)若從數(shù)列中,依次取出第2項(xiàng),第4項(xiàng),第8項(xiàng),……,第項(xiàng),……按原來順序組成一個(gè)新數(shù)列,試求數(shù)列的通項(xiàng)公式和前n項(xiàng)的和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列的前項(xiàng)積為,且 .
(Ⅰ)求證數(shù)列是等差數(shù)列;
(Ⅱ)設(shè),求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列滿足,數(shù)列滿足.
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和;
(3)若,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)等差數(shù)列的前n項(xiàng)的和為,且
(1)求的通項(xiàng)公式;
(2)令,求的前項(xiàng)和;
(3)若不等式對(duì)于恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案