【題目】已知橢圓:的離心率為,點在橢圓上.
(1)求橢圓的方程;
(2)若不過原點的直線與橢圓相交于,兩點,與直線相交于點,且是線段的中點,求面積的最大值.
【答案】(1);(2).
【解析】
(1)根據(jù)離心率為,點在橢圓上,結(jié)合性質(zhì) ,列出關(guān)于 、 、的方程組,求出 、,即可得結(jié)果;(2)先判斷直線的斜率存在,設(shè)直線的方程為,與聯(lián)立消,得,由在直線上求得,利用弦長公式、點到直線距離公式,結(jié)合三角形面積公式求得,利用基本不等式可得結(jié)果.
(1)由橢圓:的離心率為,點在橢圓上,得,解得,所以橢圓的方程為.
(2)易得直線的方程為.
當直線的斜率不存在時,的中點不在直線上,故直線的斜率存在.
設(shè)直線的方程為,與聯(lián)立消,得,所以.
設(shè),,
則,.由,
所以的中點,
因為在直線上,所以,解得,
所以,得,且,
,
又原點到直線的距離,所以 ,當且僅當,即時等號成立,符合,且,所以面積的最大值為.
科目:高中數(shù)學 來源: 題型:
【題目】下列幾個命題,是真命題有( )
A.若,則
B.若復(fù)數(shù),滿足,則
C.給定兩個命題,.若是的必要而不充分條件,則是的充分不必要條件
D.命題:,,,則:,,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,點在橢圓上.
(1)求橢圓的方程;
(2)若不過原點的直線與橢圓相交于兩點,與直線相交于點,且是線段的中點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校從8名教師中選派4名同時去4個邊遠地區(qū)支教(每地1名教師),其中甲和乙不能都去,甲和丙只能都去或都不去,則不同的選派方案有( )
A.900種B.600種C.300種D.150種
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從甲地到乙地要經(jīng)過3個十字路口,設(shè)各路口信號燈工作相互獨立,且在各路口遇到紅燈的概率分別為.
(Ⅰ)設(shè)表示一輛車從甲地到乙地遇到紅燈的個數(shù),求隨機變量的分布列和數(shù)學期望;
(Ⅱ)若有2輛車獨立地從甲地到乙地,求這2輛車共遇到1個紅燈的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】黨的十八大將生態(tài)文明建設(shè)納入中國特色社會主義事業(yè)“五位一體”總體布局,“美麗中國”成為中華民族追求的新目標.十九大報告中多次出現(xiàn)的“綠色”“低碳”“節(jié)約”等詞語,正在走入百姓生活,城市出行的新變革正在悄然發(fā)生,綠色出行的理念已深入人心,建設(shè)美麗中國,綠色出行至關(guān)重要,騎自行車或步行漸漸成為市民的一種出行習慣.某市環(huán)保機構(gòu)隨機抽查統(tǒng)計了該市部分成年市民某月騎車次數(shù),統(tǒng)計如下:
次數(shù) 年齡 | ||||||
18歲至31歲 | 8 | 12 | 20 | 60 | 140 | 150 |
32歲至44歲 | 12 | 28 | 20 | 140 | 60 | 150 |
45歲至59歲 | 25 | 50 | 80 | 100 | 225 | 450 |
60歲及以上 | 25 | 10 | 10 | 19 | 4 | 2 |
聯(lián)合國世界衛(wèi)生組織于2013年確定新的年齡分段:44歲及以下為青年人,45歲至59歲為中年人,60歲及以上為老人.
(1)若從被抽查的該月騎車次數(shù)在的老年人中隨機選出兩名幸運者給予獎勵,求其中一名幸運者該月騎車次數(shù)在之間,另一名幸運者該月騎車次數(shù)在之間的概率;
(2)用樣本估計總體的思想,解決如下問題:
①估計該市在32歲至44歲年齡段的一個青年人每月騎車的平均次數(shù);
②若月騎車次數(shù)不少于30次者稱為“騎行愛好者”,根據(jù)這些數(shù)據(jù),統(tǒng)計并完成下表,說明能否在犯錯誤的概率不超過0.001的前提下認為“騎行愛好者”與“青年人”有關(guān)?
青年人 | 非青年人 | 合計 | |
騎行愛好者 | |||
非騎行愛好者 | |||
合計 |
0.10 | 0.05 | 0.025 | 0.10 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參數(shù)數(shù)據(jù):
(其中)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知極點與直角坐標系原點重合,極軸與x軸的正半軸重合,圓C的極坐標方程為,直線l的參數(shù)方程為為參數(shù).
若,直線l與x軸的交點為M,N是圓C上一動點,求的最小值;
若直線l被圓C截得的弦長等于圓C的半徑,求a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com