有一塊直角三角形木板,如圖所示,∠C=90°,AB=5 cm,BC=3 cm,AC=4 cm,根據(jù)需要,要把它加工成一個面積最大的正方形木板,設(shè)計一個方案,應怎樣裁才能使正方形木板面積最大,并求出這個正方形木板的邊長.
邊長為cm,見解析
解:如圖(1)所示,設(shè)正方形DEFG的邊長為x cm,過點C作CM⊥AB于M,交DE于N,
因為SABCAC·BC=AB·CM,
所以AC·BC=AB·CM,即3×4=5·CM.所以CM=
因為DE∥AB,所以△CDE∽△CAB.
所以,即
所以x=

如圖(2)所示,設(shè)正方形CDEF的邊長為y cm,因為EF∥AC,所以△BEF∽△BAC.
所以,即.所以y=
因為x=,y=,所以x<y.
所以當按圖(2)的方法裁剪時,正方形面積最大,其邊長為cm.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,△ABC中,AB=AC,∠BAC=90°,AE=AC,BD=AB,點F在BC上,且CF=BC.求證:

(1)EF⊥BC;
(2)∠ADE=∠EBC.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知為半圓的直徑,,為半圓上一點,過點作半圓的切線,過點作,交半圓于點,

(1)求證:平分;
(2)求的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
上的點P到左右兩焦點F1,F(xiàn)2的距離之和為2
2
,離心率為
2
2

(Ⅰ)求橢圓的方程;
(Ⅱ)過右焦點F2的直線l交橢圓于A、B兩點,若y軸上一點M(0,
3
7
)
滿足|MA|=|MB|,求直線l的斜率k的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線Σ1y=
1
4
x2
的焦點F在橢圓Σ2
x2
a2
+
y2
b2
=1
(a>b>0)上,直線l與拋物線Σ1相切于點P(2,1),并經(jīng)過橢圓Σ2的焦點F2
(1)求橢圓Σ2的方程;
(2)設(shè)橢圓Σ2的另一個焦點為F1,試判斷直線FF1與l的位置關(guān)系.若相交,求出交點坐標;若平行,求兩直線之間的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,∠ACB=90°,CD⊥AB,垂足為D,下列結(jié)論錯誤的是(  )
A.有三個直角三角形
B.∠2=∠A
C.∠1和∠B都是∠A的余角
D.∠1=∠2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

過圓外一點作圓的切線為切點),再作割線分別交圓于、, 若,
AC=8,BC=9,則AB=________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

Rt△ABC中,∠C=90°,CD⊥AB于D,若BD∶AD=3∶2,則△ACD與△CBD的相似比為(  )
A.2∶3 B.3∶2C.9∶4D.∶3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

(2011•廣東)如圖,在梯形ABCD中,AB∥CD,AB=4,CD=2.E,F(xiàn)分別為AD,BC上點,且EF=3,EF∥AB,則梯形ABFE與梯形EFCD的面積比為       

查看答案和解析>>

同步練習冊答案