【題目】某學(xué)校高三年級(jí)為了解學(xué)生在家參加線上教學(xué)的學(xué)習(xí)情況,對(duì)高三年級(jí)進(jìn)行了網(wǎng)上數(shù)學(xué)測(cè)試,他們的成績(jī)?cè)?/span>80分到150分之間,根據(jù)統(tǒng)計(jì)數(shù)據(jù)得到如下頻率分布直方圖:
若成績(jī)?cè)趨^(qū)左側(cè),認(rèn)為該學(xué)生屬于“網(wǎng)課潛能生”,成績(jī)?cè)趨^(qū)間之間,認(rèn)為該學(xué)生屬于“網(wǎng)課中等生”,成績(jī)?cè)趨^(qū)間右側(cè),認(rèn)為該學(xué)生屬于“網(wǎng)課優(yōu)等生”.
(1)若小明的測(cè)試成績(jī)?yōu)?/span>100分,請(qǐng)判斷小明是否屬于“網(wǎng)課潛能生”,并說(shuō)明理由:(參考數(shù)據(jù):計(jì)算得)
(2)該校利用分層抽樣的方法從樣本的,兩組中抽出6人,進(jìn)行教學(xué)反饋,并從這6人中再抽取2人,贈(zèng)送一份學(xué)習(xí)資料,求獲贈(zèng)學(xué)習(xí)資料的2人中恰有1人成績(jī)超過(guò)90分的概率.
【答案】(1)是,見(jiàn)解析(2)
【解析】
(1)由頻率分布直方圖,結(jié)合平均數(shù)的求法即可求得,則,,由已知即可得解.
(2) 由,的頻率之比為1:2,根據(jù)分層抽樣可知抽取2人,抽取4人, 設(shè)從抽取的2人為,,從抽取的4人為,,,,則隨機(jī)抽取2人,列出基本事件,即可求得概率.
(1)可求得﹒
,,
“網(wǎng)課潛能生”在101.5的左側(cè),“網(wǎng)課學(xué)優(yōu)生”在131.5右側(cè).故小明屬于“網(wǎng)課潛能生”.
(2)由分層抽樣抽取2人,抽取4人,
設(shè)從抽取的2人為,,
從抽取的4人為,,,,則隨機(jī)抽取2人,
贈(zèng)送一份學(xué)習(xí)資料的基本事件有
共15種,
其中滿足恰有1人成績(jī)超過(guò)90分共8種,所以所求概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】港珠澳大橋是一座具有劃時(shí)代意義的大橋.它連通了珠海香港澳門(mén)三地,大大縮短了三地的時(shí)空距離,盤(pán)活了珠江三角洲的經(jīng)濟(jì),被譽(yù)為新的世界七大奇跡.截至2019年10月23日8點(diǎn),珠海公路口岸共驗(yàn)放出入境旅客超過(guò)1400萬(wàn)人次,日均客流量已經(jīng)達(dá)到4萬(wàn)人次,驗(yàn)放出入境車(chē)輛超過(guò)70萬(wàn)輛次,2019年春節(jié)期間,客流再次大幅增長(zhǎng),日均客流達(dá)8萬(wàn)人次,單日客流量更是創(chuàng)下11.3萬(wàn)人次的最高紀(jì)錄.
2019年從五月一日開(kāi)始的連續(xù)100天客流量頻率分布直方圖如下
(1)①同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值代替,根據(jù)頻率分布直方圖.估計(jì)客流量的平均數(shù).
②求客流量的中位數(shù).
(2)設(shè)這100天中客流量超過(guò)5萬(wàn)人次的有天,從這天中任取兩天,設(shè)為這兩天中客流量超過(guò)7萬(wàn)人的天數(shù).求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,且長(zhǎng)度單位相同.
(1)求圓的極坐標(biāo)方程;
(2)若直線:(為參數(shù))被圓截得的弦長(zhǎng)為2,求直線的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面平面,為矩形,為等腰梯形,,分別為,中點(diǎn),,,.
(1)證明:平面;
(2)求二面角的正弦值;
(3)線段上是否存在點(diǎn),使得平面,若存在求出的長(zhǎng),若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,BC//A,為正三角形,M為PD中點(diǎn).
(1)證明:CM//平面PAB;
(2)若二面角P-AB-C的余弦值為,求直線AD與平面PBD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(,為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)若,求的極坐標(biāo)方程;
(2)若與恰有4個(gè)公共點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某單位科技活動(dòng)紀(jì)念章的結(jié)構(gòu)如圖所示,O是半徑分別為1cm,2cm的兩個(gè)同心圓的圓心,等腰△ABC的頂點(diǎn)A在外圓上,底邊BC的兩個(gè)端點(diǎn)都在內(nèi)圓上,點(diǎn)O,A在直線BC的同側(cè).若線段BC與劣弧所圍成的弓形面積為S1,△OAB與△OAC的面積之和為S2, 設(shè)∠BOC=2.
(1)當(dāng)時(shí),求S2﹣S1的值;
(2)經(jīng)研究發(fā)現(xiàn)當(dāng)S2﹣S1的值最大時(shí),紀(jì)念章最美觀,求當(dāng)紀(jì)念章最美觀時(shí),cos的值.(求導(dǎo)參考公式:(sin2x)'=2cos2x,(cos2x)'=﹣2sin2x)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年春節(jié)突如其來(lái)的新型冠狀病毒肺炎在湖北爆發(fā),一方有難八方支援,全國(guó)各地的白衣天使走上戰(zhàn)場(chǎng)的第一線,某醫(yī)院抽調(diào)甲、乙兩名醫(yī)生,抽調(diào)、、三名護(hù)士支援武漢第一醫(yī)院與第二醫(yī)院,參加武漢疫情狙擊戰(zhàn)其中選一名護(hù)士與一名醫(yī)生去第一醫(yī)院,其它都在第二醫(yī)院工作,則醫(yī)生甲和護(hù)士被選在第一醫(yī)院工作的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年9月24日,阿貝爾獎(jiǎng)和菲爾茲獎(jiǎng)雙料得主、英國(guó)著名數(shù)學(xué)家阿蒂亞爵士宣布自己證明了黎曼猜想,這一事件引起了數(shù)學(xué)界的震動(dòng),在1859年,德國(guó)數(shù)學(xué)家黎曼向科學(xué)院提交了題目為《論小于某值的素?cái)?shù)個(gè)數(shù)》的論文并提出了一個(gè)命題,也就是著名的黎曼猜想.在此之前,著名數(shù)學(xué)家歐拉也曾研究過(guò)這個(gè)問(wèn)題,并得到小于數(shù)字的素?cái)?shù)個(gè)數(shù)大約可以表示為的結(jié)論(素?cái)?shù)即質(zhì)數(shù),).根據(jù)歐拉得出的結(jié)論,如下流程圖中若輸入的值為,則輸出的值應(yīng)屬于區(qū)間( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com