(本小題10分)

設(shè),在平面直角坐標(biāo)系中,已知向量,向量,,動(dòng)點(diǎn)的軌跡為E.

(1)求軌跡E的方程,并說(shuō)明該方程所表示曲線的形狀;

(2)點(diǎn)為當(dāng)時(shí)軌跡E上的任意一點(diǎn),定點(diǎn)的坐標(biāo)為(3,0),

點(diǎn)滿足,試求點(diǎn)的軌跡方程。

 

【答案】

 

(1) 當(dāng)m=0時(shí),方程表示兩直線,方程為;

當(dāng)時(shí), 方程表示的是圓

當(dāng)時(shí),方程表示的是橢圓

(2)

【解析】解:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052408014295314897/SYS201205240802379218667150_DA.files/image006.png">,,,

所以,    即. w.w.w.k.s.5.u.c.o.m    

當(dāng)m=0時(shí),方程表示兩直線,方程為;

當(dāng)時(shí), 方程表示的是圓

當(dāng)時(shí),方程表示的是橢圓;

當(dāng)時(shí),方程表示的是雙曲線.

(2)設(shè)

, ,

當(dāng)時(shí),軌跡E為,點(diǎn)

所以點(diǎn)的軌跡方程為。

 

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:甘肅省蘭州一中10-11學(xué)年高一下學(xué)期期末考試數(shù)學(xué) 題型:解答題

(本小題10分)設(shè)向量,
(Ⅰ)若,求的值;        
(Ⅱ)設(shè),求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆云南省高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題10分)設(shè)全集為,

求:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆新疆烏魯木齊八中高一下期中數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題10分)設(shè)等比數(shù)列的各項(xiàng)均為正值,首項(xiàng),前n項(xiàng)和為,且

(1)求的通項(xiàng);(2)求的前n項(xiàng)和

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012年福建省福州市高二上學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題

(本小題10分)

設(shè)分別為橢圓的左、右兩個(gè)焦點(diǎn).(1)若橢圓上的點(diǎn)兩點(diǎn)的距離之和等于4,求橢圓的方程和焦點(diǎn)坐標(biāo);(2)設(shè)點(diǎn)P是(1)中所得橢圓上的動(dòng)點(diǎn),。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012年福建省福州市高二上學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題

(本小題10分)

設(shè)命題:對(duì)任意實(shí)數(shù)x,不等式恒成立;命題:方程表示焦點(diǎn)在軸上的雙曲線.(1)若命題為真命題,求實(shí)數(shù)的取值范圍;(2)若命題: 為真命題,且“”為假命題,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案