精英家教網 > 高中數學 > 題目詳情
PA、PB、PC是從點P引出的三條射線,每兩條射線的夾角均為60°,則直線PC與平面APB所成角的余弦值是(    )

A.                 B.                C.                 D.

答案:C

解析:如圖,PC在面APB內的投影為∠APB的角平分線PH.

∴cosθ=cos∠CPH=.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

PA,PB,PC是從點P引出的三條射線,每兩條的夾角均為60°,則直線PC與平面PAB所成角的余弦值為( 。
A、
1
2
B、
6
3
C、
3
3
D、
3
2

查看答案和解析>>

科目:高中數學 來源: 題型:

PA、PB、PC是從P點出發(fā)的三條射線,每兩條射線的夾角均為60°,那么直線PC與平面PAB所成角的余弦值是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知PA、PB、PC是從P點出發(fā)的三條射線,每兩條射線的夾角均為60°,則直線PC與平面PAB所成角的余弦值是
3
3
3
3

查看答案和解析>>

科目:高中數學 來源: 題型:

PAPB、PC是從P引出的三條射線,每兩條的夾角都是,則直線PC與平面PAB所成角的余弦值為(  )

A.                     B.                  C.                  D.

查看答案和解析>>

科目:高中數學 來源:新課標高三數學空間向量及其運算、角的概念及其求法和空間距離專項訓練(河北) 題型:填空題

PA,PB,PC是從P點引出的三條射線,他們之間每兩條的夾角都是60°,則直線PC與平面PAB所成的角的余弦值為_______________

 

查看答案和解析>>

同步練習冊答案