已知橢圓的離心率為,以原點(diǎn)為圓心、橢圓的短半軸長為半徑的圓與直線相切.
(1)求橢圓的方程;
(2)設(shè),過點(diǎn)作與軸不重合的直線交橢圓于兩點(diǎn),連結(jié)分別交直線、兩點(diǎn).試問直線、的斜率之積是否為定值,若是,求出該定值;若不是,請說明理由.
(1);(2)詳見解析.

試題分析:(1)由直線和圓相切,求,再由離心率,得,從而求,進(jìn)而求橢圓的方程;(2)要說明直線的斜率之積是否為定值,關(guān)鍵是確定、兩點(diǎn)的坐標(biāo).首先設(shè)直線的方程,并與橢圓聯(lián)立,設(shè),利用三點(diǎn)共線確定、兩點(diǎn)的坐標(biāo)的坐標(biāo),再計(jì)算直線的斜率之積,這時(shí)會(huì)涉及到,結(jié)合根與系數(shù)的關(guān)系,研究其值是否為定值即可.
試題解析:(1),故     4分
(2)設(shè),若直線與縱軸垂直,  

中有一點(diǎn)與重合,與題意不符,
故可設(shè)直線.           5分
將其與橢圓方程聯(lián)立,消去得:
          6分
     7分
三點(diǎn)共線可知,,,        8分
同理可得                                             9分
                  10分
       11分
所以
故直線、的斜率為定值.                                  13分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C的兩個(gè)焦點(diǎn)分別為,且點(diǎn)在橢圓C上,又.
(1)求焦點(diǎn)F2的軌跡的方程;
(2)若直線與曲線交于M、N兩點(diǎn),以MN為直徑的圓經(jīng)過原點(diǎn),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C的中心在原點(diǎn),一個(gè)焦點(diǎn)F(-2,0),且長軸長與短軸長的比為,
(1)求橢圓C的方程;
(2)設(shè)點(diǎn)M(m,0)在橢圓C的長軸上,設(shè)點(diǎn)P是橢圓上的任意一點(diǎn),若當(dāng)最小時(shí),點(diǎn)P恰好落在橢圓的右頂點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知?jiǎng)訄A:,則圓心的軌跡是(   )
A.直線  B.圓 C.拋物線的一部分 D.橢圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知圓E:,點(diǎn),P是圓E上任意一點(diǎn).線段PF的垂直平分線和半徑PE相交于Q.
(1)求動(dòng)點(diǎn)Q的軌跡的方程;
(2)已知A,B,C是軌跡的三個(gè)動(dòng)點(diǎn),A與B關(guān)于原點(diǎn)對稱,且,問△ABC的面積是否存在最小值?若存在,求出此時(shí)點(diǎn)C的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的焦點(diǎn)為F1、F2,P是橢圓上一個(gè)動(dòng)點(diǎn),延長F1P到點(diǎn)Q,使|PQ|=|PF2|,則動(dòng)點(diǎn)Q的軌跡為(  )
A.圓B.橢圓C.雙曲線一支D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓中,以點(diǎn)為中點(diǎn)的弦所在直線斜率為(   )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在平面坐標(biāo)系xOy中,拋物線的焦點(diǎn)F與橢圓的左焦點(diǎn)重合,點(diǎn)A在拋物線上,且,若P是拋物線準(zhǔn)線上一動(dòng)點(diǎn),則的最小值為(   )
A.6B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)橢圓的兩個(gè)焦點(diǎn)分別為,點(diǎn)在橢圓上,且,則該橢圓的離心率為          

查看答案和解析>>

同步練習(xí)冊答案